Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cholesterol crystals incite inflammation in coronary arteries

19.05.2010
Cholesterol crystals, known to be a catalyst for heart attacks and strokes, also cause cells to send out danger signals that can lead to the inflammation and hardening of arteries, according to a Michigan State University cardiologist.

The discovery by George Abela, chief of the cardiology division in MSU's College of Human Medicine, and a team of researchers provides new insights into how arteries harden - a process called atherosclerosis - and gives hope for new and early treatments of cardiovascular disease.

The findings are published in the most recent edition of the journal Nature.

Past research has shown that as cholesterol builds up along the wall of an artery, it crystallizes from a liquid to a solid state and expands, said Abela, who has been studying cholesterol crystals for nearly a decade. As the crystals expand, they can disrupt plaque and cause clotting, leading to cardiac attacks. That research also was recently highlighted recently in the Journal of Clinical Lipidology.

In a new discovery, Abela and the team - while looking at causes of inflammation during atherosclerosis in mice - found that the once cholesterol crystals form in the arterial wall, they activate a biomarker called NLRP3 that induces inflammation.

"What we have found now, at the cellular level, is that the crystals are an early cause rather than a late consequence of inflammation," Abela said.

The discovery could lead to new treatments for heart disease.

"Since cholesterol crystals form very early in the process of heart disease, with great potential to aggravate atherosclerosis, we can target them early on," Abela said. "We can target new therapies by reducing cholesterol crystal deposits early on or use an inhibitor to block the inflammatory biomarker."

Abela added that the biomarker activated by the crystals could be a better indicator of potential cardiovascular disease than others, such as serum cholesterol, or the amount of cholesterol found in the bloodstream.

"Now we treat atherosclerosis on the systematic level; with this discovery we can also treat it the cellular level," he said.

Researchers from several institutions across the globe took part in the project. To review the article in Nature, go to http://www.nature.com/nature/journal/v464/n7293/full/nature08938.html. To review the article in the Journal of Clinical Lipidology, go to http://www.lipidjournal.com/article/S1933-2874(10)00102-9/abstract.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Jason Cody | EurekAlert!
Further information:
http://www.msu.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>