Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chances to treat childhood dementia

24.07.2017

Although dementia is most often seen in adults, childhood or adolescent dementia does occur. A team of researchers from the University of Würzburg believes that established therapeutic drugs might be effective against childhood dementia.

Childhood dementia is an inherited disorder that affects the metabolism of the brain. Initial symptoms include degeneration of sight followed by epileptic seizures, blindness, deafness, dementia and early death.


Retina in the mouse model for childhood dementia: The ganglion cells of a healthy retina on the left; a diseased retina in the centre. A diseased retina, treated with teriflunomide on the right.

Picture: Janos Groh

The medical term for childhood dementia is neuronal ceroid lipofuscinosis (NCL). More than ten types of the disease are known. They are all caused by different genetic mutations. No treatment is available and they are all lethal.

Inflammation of the brain discovered

The disease is aggravated by an inflammatory response in the brain. The research team of Professor Rudolf Martini, who heads the Section for Experimental Developmental Neurobiology at the Department of Neurology of the Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany, made this discovery a few years ago.

Now Martini's group is busy turning this finding into an effective treatment: "Administering the drugs fingolimod and teriflunomide shows an astonishing therapeutic effect on childhood dementia in mouse models," the professor says. All previous fundamental research experiments had already hinted at this effect.

Drugs slow down degeneration of brain and retina

In animal models, both drugs significantly reduced pathological changes in the brain and other clinical parameters such as the frequency of muscle twitching. Moreover, they caused the retina to degenerate much more slowly and less severely.

Martini and his team use optical coherence tomography to analyse the retina of living individuals. The method was originally developed for eye exams in humans: "It allows us to track the progression of the disease and the therapeutic process with an application focus and reduces the number of test animals considerably."

Brain autopsies of patients studied

At first, the JMU scientists were reticent about assessing their findings – after all they did not know whether similar inflammatory responses as found in the mouse model also occur in patients suffering from childhood dementia and whether this actually presents a new angle for treatment.

So they additionally studied rare brain autopsies provided by the London Neurodegenerative Disease Brain Bank and Brains for Dementia Research. The result: All investigated samples of patients exhibited inflammatory conditions similar to the ones in the model mice. Hence, chances are good that human patients will also respond positively to being treated with the immunomodulators.

Finding a clinically feasible way

With around 500 sufferers in Germany and 50,000 affected children worldwide, childhood dementia is a so-called rare disorder. "These diseases tend to be of little interest for most pharmaceutical companies because of the high costs involved in developing drugs for a relatively small number of patients," Martini says further.

He believes that his team's results might now show a way to fight childhood dementia and mitigate the symptoms: by using drugs that are already in clinical use and whose side effects and risks are already known. "We could succeed with fingolimod and teriflunomide. These drugs were developed to treat multiple sclerosis, the most frequent inflammatory disorder of the central nervous system," the JMU neurobiologist explains.

Compassionate use would hence be possible, but controlled clinical studies on patients would be the gold standard. Such studies, however, are challenging in terms of financing and because of the rare nature of the disease. "Fortunately, the Würzburg Center for Rare Diseases headed by Professor Helge Hebestreit, the Department of Neurology led by Professor Jens Volkmann and the Eye Clinic managed by Professor Jost Hillenkamp have offered to provide any support we need," Martini reports with pleasure.

According to Martini, this successful research project shows again that a "translational infrastructure" and animal model experiments are crucial to tackle incurable diseases in humans after all other resources have been exhausted. He believes that this is the only way to find targets for treatment.

The observations of the Würzburg team were published in the prestigious journal Molecular Therapy.

Groh J., Berve K., Martini R.: Fingolimod and Teriflunomide Attenuate Neurodegeneration in Mouse Models of Neuronal Ceroid Lipofuscinosis, Molecular Therapy, 13 May 2017, DOI: 10.1016/j.ymthe.2017.04.021

Contact

Dr. Janos Groh and Prof. Dr. Rudolf Martini, University Hospital Würzburg, Neurological Department, Section of Experimental Developmental Neurobiology
groh_j@ukw.de
rudolf.martini@uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

Further reports about: BRAIN Molecular Therapy Neurology dementia diseases drugs

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>