Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cell's split personality is a major discovery into neurological diseases

Researchers at the Université de Montreal (UdeM) and the Montreal Neurological Institute (MNI), McGill University have discovered that cells which normally support nerve cell (neuron) survival also play an active and major role in the death of neurons in the eye.

The findings, published this week in The Journal of Neuroscience, may lead to more streamlined therapies for a variety of acute and chronic neurological disorders, including glaucoma and retinal artery occlusion.

In many neurodegenerative diseases, a main factor that kills neurons is excessive levels of glutamate, the most abundant excitatory neurotransmitter in many regions of the central nervous system (CNS). Diseases that occur as a result of high glutamate levels include hypoxic–ischemic brain injury (stroke), trauma, seizures, various forms of dementia and neurodegeneration. For years, the main explanation for the toxic effects of glutamate is that it overexcites neuronal cells via activation of glutamate receptors and thereby kills them.

"The most interesting aspect of our study and the reason we are so excited is that the pathway leading to glutamate-induced nerve cell death involves another vital player – namely, glial cells," says Dr. Adriana Di Polo, neuroscientist at the UdeM. "Through careful experimentation we now know that glutamate activates signaling pathways in glial cells that then lead to neuronal death."

Glial cells are the most abundant cell type in the nervous system and are traditionally thought of as 'partner' cells to nerve cells providing support, nutrients and an optimal environment. However, this study indicates that glial cells also have a more sinister side that allows them to induce or exacerbate neuronal death in pathological conditions.

"Neuronal cell death induced by glutamate is a key step in a large number of injury and disease settings and this study is important because it provides a road-map for the cellular and molecular events that allow this to occur" says Dr. Philip Barker, neuroscientist at the MNI, "The fact that specific signaling events in glial cells are important for inducing neuronal cell death is surprising and suggests new therapeutic targets for conditions that involve excitotoxicity."

The findings of the MNI and UdeM study represent a paradigm shift from the main model of excitotoxicity that has been in place for many years. Until now, the central idea has been that glutamate, which is released upon injury, binds to and activates the glutamate receptors on neurons triggering massive calcium entry and cell death. However, clinical trials targeting glutamate receptors have been disappointing suggesting that these receptors play only a minor role in triggering neuronal death.

The study, supported by the Canadian Institutes of Health Research, focused on nerve cells in the retina which convey information from the retina to the brain along the optic nerve, and are the primary link between the retina and the brain. The death of these retinal neurons from excess glutamate causes vision loss in various neurodegenerative disorders including optic neuropathies.

By disrupting signaling events in surrounding glial cells, the researchers were able to protect the majority of these neurons, confirming that glial cell events play a key role in death triggered by glutamate. This new understanding of the excitotoxic cascade of nerve cell death provides clear targets for successful therapeutic intervention of a wide-range of neurological and neurodegenerative diseases.


The MNI is a McGill University research and teaching institute, dedicated to the study of the nervous system and neurological diseases. Founded in 1934 by the renowned Dr. Wilder Penfield, the MNI is one of the world's largest institutes of its kind. MNI researchers are world leaders in cellular and molecular neuroscience, brain imaging, cognitive neuroscience and the study and treatment of epilepsy, multiple sclerosis and neuromuscular disorders. The MNI, with its clinical partner, the Montreal Neurological Hospital (MNH), part of the McGill University Health Centre, continues to integrate research, patient care and training, and is recognized as one of the premier neuroscience centres in the world. At the MNI, we believe in investing in the faculty, staff and students who conduct outstanding research, provide advanced, compassionate care of patients and who pave the way for the next generation of medical advances. Highly talented, motivated people are the engine that drives research - the key to progress in medical care. A new building, the North Wing Expansion, is currently under construction and will house state-of-the-art brain imaging facilities. Once the construction is completed and the new building is fully equipped, the scientific community focused on brain imaging research at the MNI will be without equivalent anywhere in the world.

Anita Kar | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>