Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast cancer drug could halt other tumors

07.11.2012
The drug, geldanamycin, is well known for attacking a protein associated with the spread of breast cancer. However, a laboratory-based study found it also degraded a different protein that triggers blood vessel growth.
Stopping unwanted blood vessel growth is a key challenge in the battle against cancer, according to Dr Sreenivasan Ponnambalam, reader in human disease biology in the University of Leeds' Faculty of Biological Sciences.

"This is potentially very significant because tumours secrete substances that stimulate blood vessels to develop around them, forming networks that supply nutrients and provide pathways for spread around the body," Dr Ponnambalam said. "This is one of the big problems in cancer: how can we stop the tumour growing and spreading through these blood vessel networks?"

There are already other drugs available that try to stop this growth. One type tries to attack directly the membrane protein VEGFR2, which is essential for new blood vessel growth. However, that approach carries the risk of serious side-effects because proteins in the membrane walls of blood vessels do important work such as controlling blood pressure.

Geldanamycin offers a novel and potentially safer solution because it suppresses the protein indirectly.

The new study, based on experiments with human cells and different animal models, found that geldanamycin indirectly triggered the clearance of the VEGFR2 protein by activating a cellular quality-control system that breaks down many proteins.

That quality-control system already degrades VEGFR2 relatively slowly but the drug accelerates the process, preventing activation of the protein and inappropriate new blood vessel formation.

"With conventional treatments, we have been trying to deal with the situation after the switch has been thrown. What this drug does is destroy the key part of the switch before that switch is thrown," Dr Ponnambalam said.

"Geldanamycin and chemical derivatives have been under intensive study in the laboratory and in clinical trials for the past 20 years. The cost to the NHS or patients could be relatively low compared to the expensive existing anti-cancer drugs, which are still under patent," Dr Ponnambalam added.

The two-year study involved researchers in the University of Leeds and University College London. It was funded by The Wellcome Trust. The paper is published in the journal PLOS ONE.

Notes for editors

Contact: Chris Bunting, Press Officer, University of Leeds; phone: +44 113 343 2049 or email c.j.bunting@leeds.ac.uk.

The full paper: A.F Bruns N. Yuldasheva, A.M. Latham, Caroline Pellet-Many, L. Bao, P. Frankel, S.L. Stephen, G.J. Howell, S.B. Wheatcroft, M.T. Kearney, I.C. Zachary, S. Ponnambalam, "A heat-shock protein axis regulates VEGFR2 proteolysis, blood vessel development and repair." PLOS ONE (2012)

Chris Bunting | EurekAlert!
Further information:
http://www.leeds.ac.uk

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>