Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood test could diagnose Alzheimer's disease, UT Southwestern researchers find

06.10.2010
A set of proteins found in blood serum shows promise as a sensitive and accurate way to diagnose Alzheimer's disease, researchers at UT Southwestern Medical Center have found as part of a statewide study.

An analysis of the proteins, plus a clinical exam, proved 94 percent accurate in detecting suspected Alzheimer's and 84 percent accurate in ruling it out in people without the disease, the researchers said.

"This research uses a novel technology that makes it possible to analyze several biomarkers in a single blood sample in a cost-effective way," said Dr. Ramón Díaz-Arrastia, professor of neurology at UT Southwestern and senior author of the study which was published in the September issue of the Archives of Neurology.

Researchers have been seeking a simple blood test for Alzheimer's for years, Dr. Díaz-Arrastia said, but no single substance, or "biomarker," has been shown to be useful. Such a test, he said, would be comparable in principle to measuring blood cholesterol as a biomarker of cardiovascular disease.

Alzheimer's disease is an incurable degenerative brain disease, which currently afflicts about 5.3 million people over 65 in the U.S., according to the National Alzheimer's Association. By 2050 that number is expected to reach 11 million or more.

The disease is difficult to diagnose, particularly in its early stages when it resembles other cognitive problems. Currently, a definitive diagnosis is possible only after examining the brain tissue of deceased individuals. Tests for suspected Alzheimer's are often expensive or invasive, and not every patient is able or willing to undergo them, the researchers stated.

A blood test would provide a convenient diagnostic method that could be performed by health care workers nearly anywhere. In addition, a definitive diagnosis is important because treatments specifically targeting Alzheimer's might not be effective against other forms of neurodegenerative disease or cognitive decline, Dr. Díaz-Arrastia said.

Researchers associated with the Texas Alzheimer's Research Consortium, a five-university group funded by the state, carried out the research. In the current study, the scientists analyzed blood samples from 197 Texas patients who had suspected Alzheimer's and 203 people without the disease.

The researchers measured more than 100 blood proteins and created a mathematical analysis that could measure a person's risk of having Alzheimer's. The analysis, combined with information from a clinical exam, accurately detected Alzheimer's 94 percent of the time, and correctly ruled out Alzheimer's 84 percent of the time in people without the disease, Dr. Díaz-Arrastia said.

Neither the blood test nor a clinical exam alone was as accurate on its own as the blood test and clinical exam combined, the researchers found.

"Having a diagnosis is an important step, but it's not the end of the road unless you've got a treatment or a cure," Dr. Díaz-Arrastia said.

The next step in the work is to determine whether the biomarker test can detect accurately Alzheimer's in preserved blood serum from patients who have been diagnosed definitively by an autopsy.

Other UT Southwestern researchers participating in the study were Dr. Guanghua Xiao, assistant professor of clinical sciences; Dr. Joan Reisch, professor of clinical sciences and family and community medicine; and Dr. Perrie Adams, professor of psychiatry.

Also participating were researchers from Texas Tech University Health Sciences Center, University of North Texas Health Science Center, Baylor College of Medicine, and Marshfield Clinic Research Foundation.

The study also was funded by the National Institutes of Health.

Visit http://www.utsouthwestern.org/neuro to learn more about UT Southwestern's clinical services in the neurosciences, including memory disorders like Alzheimer's disease.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>