Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New blood cells fight brain inflammation

18.02.2014
Hyperactivity of our immune system can cause a state of chronic inflammation.

If chronic, the inflammation will affect our body and result in disease. In the devastating disease multiple sclerosis, hyperactivity of immune cells called T-cells induce chronic inflammation and degeneration of the brain.

Researchers at BRIC, the University of Copenhagen, have identified a new type of regulatory blood cells that can combat such hyperactive T-cells in blood from patients with multiple sclerosis. By stimulating the regulatory blood cells, the researchers significantly decreased the level of brain inflammation and disease in a biological model. The results are published in the journal Nature Medicine.

Molecule activate anti-inflammatory blood cells

The new blood cells belong to the group of our white blood cells called lymphocytes. The cells express a molecule called FoxA1 that the researchers found is responsible for the cells' development and suppressive functions.

"We knew that some unidentified blood cells were able to inhibit multiple sclerosis-like disease in mice and through gene analysis we found out, that these cells are a subset of our lymphocytes expressing the gene FoxA1. Importantly, when inserting FoxA1 into normal lymphocytes with gene therapy, we could change them to actively regulate inflammation and inhibit multiple sclerosis, explains associated professor Yawei Liu leading the experimental studies.

Activating own blood cells for treatment of disease

FoxA1 expressing lymphocytes were not known until now, and this is the first documentation of their importance in controlling multiple sclerosis. The number of people living with this devastating disease around the world has increased by 10 percent in the past five years to 2.3 million. It affects women twice more than men and no curing treatment exists. The research group headed by professor Shohreh Issazadeh-Navikas from BRIC examined blood of patients with multiple sclerosis, before and after two years of treatment with the drug interferon-beta. They found that patients who benefit from the treatment increase the number of this new blood cell type, which fight disease.

"From a therapeutic viewpoint, our findings are really interesting and we hope that they can help finding new treatment options for patients not benefiting from existing drugs, especially more chronic and progressive multiple sclerosis patients. In our model, we could activate lymphocytes by chemical stimulation and gene therapy, and we are curios whether this can be a new treatment strategy", says professor Shohreh Issazadeh-Navikas.

And this is exactly what the research group will focus on at next stage of their research. They have already started to test whether the new FoxA1-lymphocytes can prevent degradation of the nerve cell's myelin layer and brain degeneration in a model of progressive multiple sclerosis. Besides multiple sclerosis, knowledge on how to prevent chronic inflammation will also be valuable for other autoimmune diseases like type 1 diabetes, inflammatory bowel disease and rheumatoid arthritis, where inflammation is a major cause of the disease.

The research was conducted in collaboration with the Danish multiple Sclerosis Centre and Centre d'Esclerosi Múltiple de Catalunya in Barcelona. The research was supported by grants from the Danish Multiple Sclerosis Society, the Lundbeck Foundation, and the Danish Independent Research Council.

Anne Rahbek-Damm | EurekAlert!
Further information:
http://www.ku.dk

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>