Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Blasts may cause brain injury even without symptoms


Veterans exposed to explosions who do not report symptoms of traumatic brain injury (TBI) may still have damage to the brain's white matter comparable to veterans with TBI, according to researchers at Duke Medicine and the U.S. Department of Veterans Affairs.

The findings, published in the Journal of Head Trauma Rehabilitation on March 3, 2014, suggest that a lack of clear TBI symptoms following an explosion may not accurately reflect the extent of brain injury.

Veterans of recent military conflicts in Iraq and Afghanistan often have a history of exposure to explosive forces from bombs, grenades and other devices, although relatively little is known about whether this injures the brain. However, evidence is building – particularly among professional athletes – that subconcussive events have an effect on the brain.

"Similar to sports injuries, people near an explosion assume that if they don't have clear symptoms – losing consciousness, blurred vision, headaches – they haven't had injury to the brain," said senior author Rajendra A. Morey, M.D., associate professor of psychiatry and behavioral sciences at Duke University School of Medicine and a psychiatrist at the Durham Veterans Affairs Medical Center. "Our findings are important because they're showing that even if you don't have symptoms, there may still be damage."

... more about:
»Blasts »DTI »Medicine »TBI »Veterans »cognitive »exposure »injury »symptoms

Researchers in the Mid-Atlantic Mental Illness Research, Education and Clinical Center at the W.G. (Bill) Hefner Veterans Affairs Medical Center in Salisbury, N.C., evaluated 45 U.S. veterans who volunteered to participate in the study. The veterans, who served since September 2001, were split into three groups: veterans with a history of blast exposure with symptoms of TBI; veterans with a history of blast exposure without symptoms of TBI; and veterans without blast exposure. The study focused on veterans with primary blast exposure, or blast exposure without external injuries, and did not include those with brain injury from direct hits to the head.

To measure injury to the brain, the researchers used a type of MRI called Diffusion Tensor Imaging (DTI). DTI can detect injury to the brain's white matter by measuring the flow of fluid in the brain. In healthy white matter, fluid moves in a directional manner, suggesting that the white matter fibers are intact. Injured fibers allow the fluid to diffuse.

White matter is the connective wiring that links different areas of the brain. Since most cognitive processes involve multiple parts of the brain working together, injury to white matter can impair the brain's communication network and may result in cognitive problems.

Both groups of veterans who were near an explosion, regardless of whether they had TBI symptoms, showed a significant amount of injury compared to the veterans not exposed to a blast. The injury was not isolated to one area of the brain, and each individual had a different pattern of injury.

Using neuropsychological testing to assess cognitive performance, the researchers found a relationship between the amount of white matter injury and changes in reaction time and the ability to switch between mental tasks. However, brain injury was not linked to performance on other cognitive tests, including decision-making and organization.

"We expected the group that reported few symptoms at the time of primary blast exposure to be similar to the group without exposure. It was a surprise to find relatively similar DTI changes in both groups exposed to primary blast," said Katherine H. Taber, Ph.D., a research health scientist at the W.G. (Bill) Hefner Veterans Affairs Medical Center and the study's lead author. "We are not sure whether this indicates differences among individuals in symptoms-reporting or subconcussive effects of primary blast. It is clear there is more we need to know about the functional consequences of blast exposures."

Given the study's findings, the researchers said clinicians treating veterans should take into consideration a person's exposure to explosive forces, even among those who did not initially show symptoms of TBI. In the future, they may use brain imaging to support clinical tests.

"Imaging could potentially augment the existing approaches that clinicians use to evaluate brain injury by looking below the surface for TBI pathology," Morey said.

The researchers noted that the results are preliminary, and should be replicated in a larger study.


In addition to Morey and Taber, study authors include Courtney C. Haswell of the Durham VA Medical Center; Susan D. Hurt and Cory D. Lamar of the W.G. (Bill) Hefner VA Medical Center; Jared A. Rowland of the W.G. (Bill) Hefner VA Medical Center and Wake Forest School of Medicine; and Robin A. Hurley of the W.G. (Bill) Hefner VA Medical Center, Wake Forest School of Medicine and Baylor College of Medicine.

This research was supported by a grant from the Department of Defense, Joint Improvised Explosive Device Defeat Organization (51467EGJDO), the Department of Veterans Health Affairs Rehabilitation Research and Development (RX000389-01) and with resources of the Mid-Atlantic Mental Illness Research, Education and Clinical Center and W.G. Hefner VA Medical Center.

Rachel Harrison | EurekAlert!
Further information:

Further reports about: Blasts DTI Medicine TBI Veterans cognitive exposure injury symptoms

More articles from Health and Medicine:

nachricht ARTORG and Inselspital develop artificial pancreas
26.11.2015 | Universitätsspital Bern

nachricht Laboratory study: Scientists from Cologne explore a new approach to prevent newborn epilepsies
24.11.2015 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>