Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Blasts may cause brain injury even without symptoms


Veterans exposed to explosions who do not report symptoms of traumatic brain injury (TBI) may still have damage to the brain's white matter comparable to veterans with TBI, according to researchers at Duke Medicine and the U.S. Department of Veterans Affairs.

The findings, published in the Journal of Head Trauma Rehabilitation on March 3, 2014, suggest that a lack of clear TBI symptoms following an explosion may not accurately reflect the extent of brain injury.

Veterans of recent military conflicts in Iraq and Afghanistan often have a history of exposure to explosive forces from bombs, grenades and other devices, although relatively little is known about whether this injures the brain. However, evidence is building – particularly among professional athletes – that subconcussive events have an effect on the brain.

"Similar to sports injuries, people near an explosion assume that if they don't have clear symptoms – losing consciousness, blurred vision, headaches – they haven't had injury to the brain," said senior author Rajendra A. Morey, M.D., associate professor of psychiatry and behavioral sciences at Duke University School of Medicine and a psychiatrist at the Durham Veterans Affairs Medical Center. "Our findings are important because they're showing that even if you don't have symptoms, there may still be damage."

... more about:
»Blasts »DTI »Medicine »TBI »Veterans »cognitive »exposure »injury »symptoms

Researchers in the Mid-Atlantic Mental Illness Research, Education and Clinical Center at the W.G. (Bill) Hefner Veterans Affairs Medical Center in Salisbury, N.C., evaluated 45 U.S. veterans who volunteered to participate in the study. The veterans, who served since September 2001, were split into three groups: veterans with a history of blast exposure with symptoms of TBI; veterans with a history of blast exposure without symptoms of TBI; and veterans without blast exposure. The study focused on veterans with primary blast exposure, or blast exposure without external injuries, and did not include those with brain injury from direct hits to the head.

To measure injury to the brain, the researchers used a type of MRI called Diffusion Tensor Imaging (DTI). DTI can detect injury to the brain's white matter by measuring the flow of fluid in the brain. In healthy white matter, fluid moves in a directional manner, suggesting that the white matter fibers are intact. Injured fibers allow the fluid to diffuse.

White matter is the connective wiring that links different areas of the brain. Since most cognitive processes involve multiple parts of the brain working together, injury to white matter can impair the brain's communication network and may result in cognitive problems.

Both groups of veterans who were near an explosion, regardless of whether they had TBI symptoms, showed a significant amount of injury compared to the veterans not exposed to a blast. The injury was not isolated to one area of the brain, and each individual had a different pattern of injury.

Using neuropsychological testing to assess cognitive performance, the researchers found a relationship between the amount of white matter injury and changes in reaction time and the ability to switch between mental tasks. However, brain injury was not linked to performance on other cognitive tests, including decision-making and organization.

"We expected the group that reported few symptoms at the time of primary blast exposure to be similar to the group without exposure. It was a surprise to find relatively similar DTI changes in both groups exposed to primary blast," said Katherine H. Taber, Ph.D., a research health scientist at the W.G. (Bill) Hefner Veterans Affairs Medical Center and the study's lead author. "We are not sure whether this indicates differences among individuals in symptoms-reporting or subconcussive effects of primary blast. It is clear there is more we need to know about the functional consequences of blast exposures."

Given the study's findings, the researchers said clinicians treating veterans should take into consideration a person's exposure to explosive forces, even among those who did not initially show symptoms of TBI. In the future, they may use brain imaging to support clinical tests.

"Imaging could potentially augment the existing approaches that clinicians use to evaluate brain injury by looking below the surface for TBI pathology," Morey said.

The researchers noted that the results are preliminary, and should be replicated in a larger study.


In addition to Morey and Taber, study authors include Courtney C. Haswell of the Durham VA Medical Center; Susan D. Hurt and Cory D. Lamar of the W.G. (Bill) Hefner VA Medical Center; Jared A. Rowland of the W.G. (Bill) Hefner VA Medical Center and Wake Forest School of Medicine; and Robin A. Hurley of the W.G. (Bill) Hefner VA Medical Center, Wake Forest School of Medicine and Baylor College of Medicine.

This research was supported by a grant from the Department of Defense, Joint Improvised Explosive Device Defeat Organization (51467EGJDO), the Department of Veterans Health Affairs Rehabilitation Research and Development (RX000389-01) and with resources of the Mid-Atlantic Mental Illness Research, Education and Clinical Center and W.G. Hefner VA Medical Center.

Rachel Harrison | EurekAlert!
Further information:

Further reports about: Blasts DTI Medicine TBI Veterans cognitive exposure injury symptoms

More articles from Health and Medicine:

nachricht Allergic asthma: UFZ researchers identify a key molecule
12.10.2015 | Helmholtz Centre for Environmental Research (UFZ),

nachricht Antioxidants cause malignant melanoma to metastasize faster
09.10.2015 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Light Touch May Help Animals and Robots Move on Sand and Snow

Having a light touch can make a hefty difference in how well animals and robots move across challenging granular surfaces such as snow, sand and leaf litter. Research reported October 9 in the journal Bioinspiration & Biomimetics shows how the design of appendages – whether legs or wheels – affects the ability of both robots and animals to cross weak and flowing surfaces.

Using an air fluidized bed trackway filled with poppy seeds or glass spheres, researchers at the Georgia Institute of Technology systematically varied the...

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Siemens to build light rail vehicles for cities in the US

12.10.2015 | Press release

Siemens to add an additional 173 megawatts to Clyde onshore wind farm in Scotland

12.10.2015 | Press release

Scientists paint quantum electronics with beams of light

12.10.2015 | Physics and Astronomy

More VideoLinks >>>