Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Blasts may cause brain injury even without symptoms


Veterans exposed to explosions who do not report symptoms of traumatic brain injury (TBI) may still have damage to the brain's white matter comparable to veterans with TBI, according to researchers at Duke Medicine and the U.S. Department of Veterans Affairs.

The findings, published in the Journal of Head Trauma Rehabilitation on March 3, 2014, suggest that a lack of clear TBI symptoms following an explosion may not accurately reflect the extent of brain injury.

Veterans of recent military conflicts in Iraq and Afghanistan often have a history of exposure to explosive forces from bombs, grenades and other devices, although relatively little is known about whether this injures the brain. However, evidence is building – particularly among professional athletes – that subconcussive events have an effect on the brain.

"Similar to sports injuries, people near an explosion assume that if they don't have clear symptoms – losing consciousness, blurred vision, headaches – they haven't had injury to the brain," said senior author Rajendra A. Morey, M.D., associate professor of psychiatry and behavioral sciences at Duke University School of Medicine and a psychiatrist at the Durham Veterans Affairs Medical Center. "Our findings are important because they're showing that even if you don't have symptoms, there may still be damage."

... more about:
»Blasts »DTI »Medicine »TBI »Veterans »cognitive »exposure »injury »symptoms

Researchers in the Mid-Atlantic Mental Illness Research, Education and Clinical Center at the W.G. (Bill) Hefner Veterans Affairs Medical Center in Salisbury, N.C., evaluated 45 U.S. veterans who volunteered to participate in the study. The veterans, who served since September 2001, were split into three groups: veterans with a history of blast exposure with symptoms of TBI; veterans with a history of blast exposure without symptoms of TBI; and veterans without blast exposure. The study focused on veterans with primary blast exposure, or blast exposure without external injuries, and did not include those with brain injury from direct hits to the head.

To measure injury to the brain, the researchers used a type of MRI called Diffusion Tensor Imaging (DTI). DTI can detect injury to the brain's white matter by measuring the flow of fluid in the brain. In healthy white matter, fluid moves in a directional manner, suggesting that the white matter fibers are intact. Injured fibers allow the fluid to diffuse.

White matter is the connective wiring that links different areas of the brain. Since most cognitive processes involve multiple parts of the brain working together, injury to white matter can impair the brain's communication network and may result in cognitive problems.

Both groups of veterans who were near an explosion, regardless of whether they had TBI symptoms, showed a significant amount of injury compared to the veterans not exposed to a blast. The injury was not isolated to one area of the brain, and each individual had a different pattern of injury.

Using neuropsychological testing to assess cognitive performance, the researchers found a relationship between the amount of white matter injury and changes in reaction time and the ability to switch between mental tasks. However, brain injury was not linked to performance on other cognitive tests, including decision-making and organization.

"We expected the group that reported few symptoms at the time of primary blast exposure to be similar to the group without exposure. It was a surprise to find relatively similar DTI changes in both groups exposed to primary blast," said Katherine H. Taber, Ph.D., a research health scientist at the W.G. (Bill) Hefner Veterans Affairs Medical Center and the study's lead author. "We are not sure whether this indicates differences among individuals in symptoms-reporting or subconcussive effects of primary blast. It is clear there is more we need to know about the functional consequences of blast exposures."

Given the study's findings, the researchers said clinicians treating veterans should take into consideration a person's exposure to explosive forces, even among those who did not initially show symptoms of TBI. In the future, they may use brain imaging to support clinical tests.

"Imaging could potentially augment the existing approaches that clinicians use to evaluate brain injury by looking below the surface for TBI pathology," Morey said.

The researchers noted that the results are preliminary, and should be replicated in a larger study.


In addition to Morey and Taber, study authors include Courtney C. Haswell of the Durham VA Medical Center; Susan D. Hurt and Cory D. Lamar of the W.G. (Bill) Hefner VA Medical Center; Jared A. Rowland of the W.G. (Bill) Hefner VA Medical Center and Wake Forest School of Medicine; and Robin A. Hurley of the W.G. (Bill) Hefner VA Medical Center, Wake Forest School of Medicine and Baylor College of Medicine.

This research was supported by a grant from the Department of Defense, Joint Improvised Explosive Device Defeat Organization (51467EGJDO), the Department of Veterans Health Affairs Rehabilitation Research and Development (RX000389-01) and with resources of the Mid-Atlantic Mental Illness Research, Education and Clinical Center and W.G. Hefner VA Medical Center.

Rachel Harrison | EurekAlert!
Further information:

Further reports about: Blasts DTI Medicine TBI Veterans cognitive exposure injury symptoms

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>