Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biopsies may overlook esophagus disease

07.09.2012
Study reveals limitations in detecting allergic disorder

University of Utah engineers mapped white blood cells called eonsinophils and showed an existing diagnostic method may overlook an elusive digestive disorder that causes swelling in the esophagus and painful swallowing.


These are microscope images of tissue from the esophagus of a patient with a disease named eosinophilic esophagitis, or EoE. The bar graphs around each image depict the number of white blood cells called eosinophils along the perimeter of each tissue sample. The cells eat away at the lining of the esophagus to cause the disorder. A University of Utah study suggests that the current method of diagnosing EoE by taking tissue samples with an endoscope may lead to under- or misdiagnosis of the disease.

Credit: Hedieh Saffari, University of Utah, for the Journal of Allergy and Clinical Immunology.

By pinpointing the location and density of eosinophils, which regulate allergy mechanisms in the immune system, these researchers suggest the disease eosinophilic esophagitis, or EoE, may be under- or misdiagnosed in patients using the current method, which is to take tissue samples (biopsies) with an endoscope.

These findings are published as the cover article in the September 2012 issue of the Journal of Allergy and Clinical Immunology. Despite the limitations of current detection methods for EoE, the study authors say biopsies remain the current standard of care, but the engineers are working toward new diagnostic methods that could be available in five years.

In EoE, eosinophils typically found in the bloodstream invade the esophagus and start chewing away at its lining. Often triggered by food allergies, EoE symptoms overlap with other disorders such as acid reflux.

"The gold standard for understanding this disease is detecting the location and presence of eosinophils in the esophagus. Unfortunately, eosinophils are not uniformly distributed within the esophagus, which can lead to underdiagnosis," says study co-author Leonard Pease, assistant professor of chemical engineering at the University of Utah. He is also an adjunct professor of gastroenterology and pharmaceutics.

The University of Utah team showed that even a patient with known EoE would require more than 31 random tissue samples, or biopsies, from an area in the esophagus with low eosinophil density to reliably diagnose EoE. Currently, if a patient is suspected of having EoE, five to 12 biopsies are collected along the esophagus using an endoscope. If more than 15 eosinophils turn up in any one of these samples, a diagnosis of EoE is made.

"This is the first quantitative assessment of how eosinophils are distributed in the esophagus," says co-author Gerald Gleich, professor of dermatology at the University of Utah and specialist in eosinophil-related diseases. "Until now, someone would go in and snip around, but they wouldn't have this map to quantify the degree of infiltration of this disease in relationship to the actual anatomy. These findings impact how many biopsies a doctor should perform."

Since eonsinophils are scattered within the esophagus, EoE can go undetected until severe symptoms surface, ranging from painful swallowing to chest pains that mimic a heart attack.

"This is not the ideal way to diagnose EoE," says Pease. "If the distribution of eosinophils was 100 percent uniform, it wouldn't matter where you sample, but in fact it's patchy. Our mapping shows if you sample in one region, no diagnosis would be made, but if you took another region about an inch away, the same patient would appear to be severely diseased."

To generate a map of eosinophil distribution in the esophagus, lead author Hedieh Saffari examined each of 17 tissue sections taken at intervals every one-eighth to one-fifth of an inch along the esophagus of a known adult EoE patient. A typical adult esophagus is 10 inches long.

"For every cross section, I used microscopy to count the number of eosinophil cells along the entire perimeter of the tissue surface in each high-power field of view image," said Saffari, a chemical engineering graduate student. "There were somewhere between 40 and 120 of these images per cross section so it took a lot of time, but it was worth it to extract the information we were looking for. No one has done this type of mapping before."

Saffari's diligence paid off. With her painstakingly collected data, she and Pease used a statistical simulation technique to determine whether randomly sampling tissue would result in a positive diagnosis of EoE based on eonsinophil density.

"Our analysis shows that with current diagnostic conventions, you are only going to catch the patients with medium-to-high eonsinophil densities, which means we may be misdiagnosing patients as much as one out of every five times," says Pease. "Given this data, clearly endoscopy is not sufficient for a disease this patchy."

Gleich says their findings will inform future revisions of EoE diagnosis guidelines, but biopsies are "currently the standard of care and will not change in the near future."

Building on this study, Pease and Saffari are investigating technologies for labeling and detecting proteins shed by eosinophils in the esophagus, which would help detect EoE at an earlier stage. They have also filed a patent to use radiolabeled antibodies to map eosinophils throughout the entire esophagus, a new technique that would be evaluated with a clinical trial. "We're optimistic that such a diagnostic tool could be available in the next five years," Pease says.

Saffari adds this is part of the team's long-term goal to develop new strategies to enhance EoE diagnosis and understand what causes the disease.

Pease, Gleich and Saffari conducted the study with gastroenterologists Kathryn Peterson and John Fang and pathologist Carolin Teman at the University of Utah. This study was funded by the University of Utah, the Utah Governor's Office of Economic Development and the National Science Foundation.

University of Utah College of Engineering
72 S. Central Campus Dr., Room 1650 WEB, Salt Lake City, UT 84112
(801) 581-6911 fax: (801) 581-8692

Aditi Risbud | EurekAlert!
Further information:
http://www.utah.edu
http://www.coe.utah.edu

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>