Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomarker test shows promise for melanoma diagnosis

25.01.2011
A new study shows that a test of biomarkers for DNA methylation is technically feasible and could aid in earlier, more precise diagnosis of melanoma.

In a paper that appeared online last week in the journal Pigment Cell & Melanoma Research, a team of UNC researchers tested whether DNA methylation profiling could be accomplished on melanoma and mole tissues that had been preserved in fixatives for typical pathology examination after biopsy.

They found that results on tissues prepared in this way were reliable and DNA methylation distinguished malignant melanomas from non-malignant moles.

Melanoma is one of the only forms of cancer that is still on the rise and is the most common form of cancer in young adults. The incidence of melanoma in women under age 30 has increased more than 50 percent since 1980.

"When melanoma is diagnosed early, the prognosis is good. However, once it spreads, it is very difficult to treat. Melanomas and moles can appear similar on the skin and under the microscope making diagnosis of some melanomas difficult. That's why we wanted to determine whether a test for DNA methylation is feasible as a tool for diagnosis," added Nancy Thomas, MD, PhD, professor of dermatology and a member of UNC Lineberger Comprehensive Cancer Center.

Kathleen Conway Dorsey, Ph.D, added, "We are very excited because, with this study, we have shown that this type of testing is feasible and that it has the potential to reliably distinguish between melanoma and benign skin lesions. Devising a molecular test that could aid in the early specific diagnosis of melanoma could have significant benefit for patients." Conway is assistant research professor of epidemiology at UNC's Gillings School of Global Public Health and a member of UNC Lineberger Comprehensive Cancer Center.

The team's research pinpointed sites on 22 genes that have significantly different methylation levels between melanomas and non-melanoma lesions, as well as 12 locations that are highly predictive of melanoma. According to Thomas, another goal of the team is to develop a DNA-methylation test for melanoma tumor DNA that is shed into the bloodstream and that can serve as a measure for disease activity.

"If this test can be developed, it opens the door to diagnose recurrence early and initiate treatment while tumors are more likely to respond to treatment. It would also give us another way to monitor patients for response to treatment and help us better optimize treatments for each patient," Thomas noted.

Other members of the research team include Sharon Edmiston, BS, Zakaria Khondker, MStat, Pamela Groben, MD, clinical professor of pathology & Laboratory Medicine, Xin Zhou, PhD, Pei Fen Kuan, PhD, research assistant professor of biostatistics, Honglin Hao, Craig Carson, PhD, and David Ollila, MD, associate professor of surgery, all at UNC-Chapel Hill. The team also included Haitao Chu, MD, PhD, of the University of Minnesota and Marianne Berwick, PhD, MPH, of the University of New Mexico.

The research was funded by the National Cancer Institute and a UNC Lineberger Pilot Grant.

Ellen de Graffenreid | EurekAlert!
Further information:
http://www.unc.edu

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>