Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autistic kids born preterm, post-term have more severe symptoms

04.04.2012
For children with autism, being born several weeks early or several weeks late tends to increase the severity of their symptoms, according to new research out of Michigan State University.
Additionally, autistic children who were born either preterm or post-term are more likely to self-injure themselves compared with autistic children born on time, revealed the study by Tammy Movsas of MSU's Department of Epidemiology.

Though the study did not uncover why there is an increase in autistic symptoms, the reasons may be tied to some of the underlying causes of why a child is born preterm (prior to 37 weeks) or post-term (after 42 weeks) in the first place.

The research appears online in the Journal of Autism and Development Disorders.

Movsas, a postdoctoral epidemiology fellow in MSU's College of Human Medicine, said the study reveals there are many different manifestations of autism spectrum disorder, a collection of developmental disorders including both autism and Asperger syndrome. It also shows the length of the mother's pregnancy is one factor affecting the severity of the disorder.

While previous research has linked premature birth to higher rates of autism, this is one of the first studies to look at the severity of the disease among autistic children who had been born early, on time and late.

"We think about autism being caused by a combination of genetic and environmental factors," she said. "With preterm and post-term babies, there is something underlying that is altering the genetic expression of autism.

"The outside environment in which a preterm baby continues to mature is very different than the environment that the baby would have experienced in utero. This change in environment may be part of the reason why there is a difference in autistic severity in this set of infants."

Movsas added that for post-term babies, the longer exposure to hormones while a baby is in utero, the higher chance of placental malfunction and the increased rate of C-section and instrument-assisted births may play a role.

The study also found that babies born outside of normal gestational age (40 weeks) - specifically very preterm babies - showed an increase in stereotypical autistic mannerisms.

"Normal gestation age of birth seems to mitigate the severity of autism spectrum disorder symptoms, and the types of autistic traits tend to be different depending on age at birth," she said.

The study analyzed an online database compiled by Kennedy Krieger Institute at Johns Hopkins University of nearly 4,200 mothers - with autistic children ages 4-21 - between 2006 and 2010. It divided the data on births into four categories: very preterm (born prior to 34 weeks); preterm (34 to 37 weeks); standard (37 to 42 weeks); and post-term (born after 42 weeks)

The mothers filled out a pair of questionnaires regarding the symptoms of their autistic children, and the results revealed very preterm, preterm and post-term autistic children had significantly higher screening scores for autism spectrum disorder than autistic children born full term.

"The findings point to the fact that although autism has a strong genetic component, something about pregnancy or the perinatal period may affect how autism manifests," said Nigel Paneth, an MSU epidemiologist who worked with Movsas on the paper. "This adds to our earlier finding that prematurity is a major risk factor for autism spectrum disorder and may help us understand if anything can be done during early life to prevent or alleviate autism spectrum disorder."

For the full research article, go to http://bit.ly/HRceAq. For background on Movsas and her research, go to http://news.msu.edu/story/9739/.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Jason Cody | EurekAlert!
Further information:
http://www.msu.edu

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>