Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autistic kids born preterm, post-term have more severe symptoms

04.04.2012
For children with autism, being born several weeks early or several weeks late tends to increase the severity of their symptoms, according to new research out of Michigan State University.
Additionally, autistic children who were born either preterm or post-term are more likely to self-injure themselves compared with autistic children born on time, revealed the study by Tammy Movsas of MSU's Department of Epidemiology.

Though the study did not uncover why there is an increase in autistic symptoms, the reasons may be tied to some of the underlying causes of why a child is born preterm (prior to 37 weeks) or post-term (after 42 weeks) in the first place.

The research appears online in the Journal of Autism and Development Disorders.

Movsas, a postdoctoral epidemiology fellow in MSU's College of Human Medicine, said the study reveals there are many different manifestations of autism spectrum disorder, a collection of developmental disorders including both autism and Asperger syndrome. It also shows the length of the mother's pregnancy is one factor affecting the severity of the disorder.

While previous research has linked premature birth to higher rates of autism, this is one of the first studies to look at the severity of the disease among autistic children who had been born early, on time and late.

"We think about autism being caused by a combination of genetic and environmental factors," she said. "With preterm and post-term babies, there is something underlying that is altering the genetic expression of autism.

"The outside environment in which a preterm baby continues to mature is very different than the environment that the baby would have experienced in utero. This change in environment may be part of the reason why there is a difference in autistic severity in this set of infants."

Movsas added that for post-term babies, the longer exposure to hormones while a baby is in utero, the higher chance of placental malfunction and the increased rate of C-section and instrument-assisted births may play a role.

The study also found that babies born outside of normal gestational age (40 weeks) - specifically very preterm babies - showed an increase in stereotypical autistic mannerisms.

"Normal gestation age of birth seems to mitigate the severity of autism spectrum disorder symptoms, and the types of autistic traits tend to be different depending on age at birth," she said.

The study analyzed an online database compiled by Kennedy Krieger Institute at Johns Hopkins University of nearly 4,200 mothers - with autistic children ages 4-21 - between 2006 and 2010. It divided the data on births into four categories: very preterm (born prior to 34 weeks); preterm (34 to 37 weeks); standard (37 to 42 weeks); and post-term (born after 42 weeks)

The mothers filled out a pair of questionnaires regarding the symptoms of their autistic children, and the results revealed very preterm, preterm and post-term autistic children had significantly higher screening scores for autism spectrum disorder than autistic children born full term.

"The findings point to the fact that although autism has a strong genetic component, something about pregnancy or the perinatal period may affect how autism manifests," said Nigel Paneth, an MSU epidemiologist who worked with Movsas on the paper. "This adds to our earlier finding that prematurity is a major risk factor for autism spectrum disorder and may help us understand if anything can be done during early life to prevent or alleviate autism spectrum disorder."

For the full research article, go to http://bit.ly/HRceAq. For background on Movsas and her research, go to http://news.msu.edu/story/9739/.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Jason Cody | EurekAlert!
Further information:
http://www.msu.edu

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>