Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autistic kids born preterm, post-term have more severe symptoms

04.04.2012
For children with autism, being born several weeks early or several weeks late tends to increase the severity of their symptoms, according to new research out of Michigan State University.
Additionally, autistic children who were born either preterm or post-term are more likely to self-injure themselves compared with autistic children born on time, revealed the study by Tammy Movsas of MSU's Department of Epidemiology.

Though the study did not uncover why there is an increase in autistic symptoms, the reasons may be tied to some of the underlying causes of why a child is born preterm (prior to 37 weeks) or post-term (after 42 weeks) in the first place.

The research appears online in the Journal of Autism and Development Disorders.

Movsas, a postdoctoral epidemiology fellow in MSU's College of Human Medicine, said the study reveals there are many different manifestations of autism spectrum disorder, a collection of developmental disorders including both autism and Asperger syndrome. It also shows the length of the mother's pregnancy is one factor affecting the severity of the disorder.

While previous research has linked premature birth to higher rates of autism, this is one of the first studies to look at the severity of the disease among autistic children who had been born early, on time and late.

"We think about autism being caused by a combination of genetic and environmental factors," she said. "With preterm and post-term babies, there is something underlying that is altering the genetic expression of autism.

"The outside environment in which a preterm baby continues to mature is very different than the environment that the baby would have experienced in utero. This change in environment may be part of the reason why there is a difference in autistic severity in this set of infants."

Movsas added that for post-term babies, the longer exposure to hormones while a baby is in utero, the higher chance of placental malfunction and the increased rate of C-section and instrument-assisted births may play a role.

The study also found that babies born outside of normal gestational age (40 weeks) - specifically very preterm babies - showed an increase in stereotypical autistic mannerisms.

"Normal gestation age of birth seems to mitigate the severity of autism spectrum disorder symptoms, and the types of autistic traits tend to be different depending on age at birth," she said.

The study analyzed an online database compiled by Kennedy Krieger Institute at Johns Hopkins University of nearly 4,200 mothers - with autistic children ages 4-21 - between 2006 and 2010. It divided the data on births into four categories: very preterm (born prior to 34 weeks); preterm (34 to 37 weeks); standard (37 to 42 weeks); and post-term (born after 42 weeks)

The mothers filled out a pair of questionnaires regarding the symptoms of their autistic children, and the results revealed very preterm, preterm and post-term autistic children had significantly higher screening scores for autism spectrum disorder than autistic children born full term.

"The findings point to the fact that although autism has a strong genetic component, something about pregnancy or the perinatal period may affect how autism manifests," said Nigel Paneth, an MSU epidemiologist who worked with Movsas on the paper. "This adds to our earlier finding that prematurity is a major risk factor for autism spectrum disorder and may help us understand if anything can be done during early life to prevent or alleviate autism spectrum disorder."

For the full research article, go to http://bit.ly/HRceAq. For background on Movsas and her research, go to http://news.msu.edu/story/9739/.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Jason Cody | EurekAlert!
Further information:
http://www.msu.edu

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>