Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atrophy in key region of brain associated with multiple sclerosis

23.04.2013
Magnetic resonance imaging (MRI) measurements of atrophy in an important area of the brain are an accurate predictor of multiple sclerosis (MS), according to a new study published online in the journal Radiology. According to the researchers, these atrophy measurements offer an improvement over current methods for evaluating patients at risk for MS.

MS develops as the body's immune system attacks and damages myelin, the protective layer of fatty tissue that surrounds nerve cells within the brain and spinal cord. Symptoms include visual disturbances, muscle weakness and trouble with coordination and balance. People with severe cases can lose the ability to speak or walk.

Approximately 85 percent of people with MS suffer an initial, short-term neurological episode known as clinically isolated syndrome (CIS). A definitive MS diagnosis is based on a combination of factors, including medical history, neurological exams, development of a second clinical attack and detection of new and enlarging lesions with contrast-enhanced or T2-weighted MRI.

"For some time we've been trying to understand MRI biomarkers that predict MS development from the first onset of the disease," said Robert Zivadinov, M.D., Ph.D., FAAN, from the Buffalo Neuroimaging Analysis Center of the University at Buffalo in Buffalo, N.Y. "In the last couple of years, research has become much more focused on the thalamus."

The thalamus is a structure of gray matter deep within the brain that acts as a kind of relay center for nervous impulses. Recent studies found atrophy of the thalamus in all different MS disease types and detected thalamic volume loss in pediatric MS patients.

"Thalamic atrophy may become a hallmark of how we look at the disease and how we develop drugs to treat it," Dr. Zivadinov said.

For this study, Dr. Zivadinov and colleagues investigated the association between the development of thalamic atrophy and conversion to clinically definite MS.

"One of the most important reasons for the study was to understand which regions of the brain are most predictive of a second clinical attack," he said. "No one has really looked at this over the long term in a clinical trial."

The researchers used contrast-enhanced MRI for initial assessment of 216 CIS patients. They performed follow-up scans at six months, one year and two years. Over two years, 92 of 216 patients, or 42.6 percent, converted to clinically definite MS. Decreases in thalamic volume and increase in lateral ventricle volumes were the only MRI measures independently associated with the development of clinically definite MS.

"First, these results show that atrophy of the thalamus is associated with MS," Dr. Zivadinov said. "Second, they show that thalamic atrophy is a better predictor of clinically definite MS than accumulation of T2-weighted and contrast-enhanced lesions."

The findings suggest that measurement of thalamic atrophy and increase in ventricular size may help identify patients at high risk for conversion to clinically definite MS in future clinical trials involving CIS patients.

"Thalamic atrophy is an ideal MRI biomarker because it's detectable at very early stage," Dr. Zivadinov said. "It has very good predictive value, and you will see it used more and more in the future."

The research team continues to follow the study group, with plans to publish results from the four-year follow-up next summer. They are also trying to learn more about the physiology of the thalamic involvement in MS.

"The next step is to look at where the lesions develop over two years with respect to the location of the atrophy," Dr. Zivadinov said. "Thalamic atrophy cannot be explained entirely by accumulation of lesions; there must be an independent component that leads to loss of thalamus."

MS affects more than 2 million people worldwide, according to the Multiple Sclerosis International Foundation. There is no cure, but early diagnosis and treatment can slow development of the disease.

"Thalamic Atrophy is Associated with Development of Clinically Definite Multiple Sclerosis." Collaborating with Dr. Zivadinov were Eva Havrdová, M.D., Ph.D., Niels Bergsland, M.S., Michaela Tyblova, M.D., Jesper Hagemeier, M.S., Zdenek Seidl, M.D., Ph.D., Michael G. Dwyer, M.S., Manuela Vaneckova, M.D., Ph.D., Jan Krasensky, M.Sc., Ellen Carl, Ph.D., Tomas Kalincik, M.D., Ph.D., Dana Horáková, M.D., Ph.D.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc.

RSNA is an association of more than 51,000 radiologists, radiation oncologists, medical physicists and related scientists promoting excellence in patient care and health care delivery through education, research and technologic innovation. The Society is based in Oak Brook, Ill. (RSNA.org)

For patient-friendly information on MRI, visit RadiologyInfo.org.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Health and Medicine:

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>