Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach may allow faster spinal anesthesia for cancer patients at end of life

28.05.2013
For patients with uncontrolled pain, simple equations could mean fewer days in the hospital

For patients with uncontrolled pain from terminal cancer, a new approach to calculating initial dosage may allow a quicker start of spinal analgesia—and less time in the hospital, according to a study in the June issue of Anesthesia & Analgesia, official journal of the International Anesthesia Research Society (IARS).

Led by Dr Vivek Tim Malhotra of Memorial Sloan Kettering Cancer Center, New York, the researchers developed a set of equations for estimating the initial dose of intrathecal spinal pain relievers, thus avoiding the need for a trial period of epidural anesthesia in the hospital. The researchers hope their method will shorten the time to satisfactory pain control in patients with pain from advanced cancer, allowing them to spend more of their remaining days at home.

New Equations for Estimating Intrathecal Analgesia Dose

Intrathecal analgesia is an important option for "intractable" cancer pain that no longer responds to oral or injected pain medications. In this technique, a catheter is placed in the intrathecal space around the spinal cord, with individualized doses of strong opioid pain relievers given through a drug pump. The standard approach to determining the initial dose is a trial period of another type of spinal drug injection—epidural analgesia—performed in the hospital.

However, by the time patients are referred to a pain specialist for spinal analgesia, they typically have advanced cancer with limited life expectancy. Dr Malhotra and colleagues were looking for some way of calculating the initial intrathecal analgesia dose without the need for an epidural trial.

The researchers performed an in-depth analysis of 46 patients, treated over a six-year period, who underwent an epidural drug trial before intrathecal analgesia. The goal was to develop a way of predicting the initial intrathecal dose based on the patient's last oral or injected ("systemic") drug dosage.

Based on this and other factors—including the patient's age, type of pain, type of cancer, and pain severity score—the researchers were able to develop relatively simple equations for predicting the initial intrathecal opioid dose needed to control the patients' pain. The equations provided at least a guideline for estimating the initial spinal analgesia dose, while avoiding the need for an epidural trial.

In the 46 patients studied, time spent in the hospital for placement of the spinal catheter and epidural trial was between 9 and 17 days. Dr Malhotra and coauthors estimated that using the study equations—and avoiding the need for an epidural trial—could reduce hospital days by about half.

"This reduces time in the hospital for those with an already limited life expectancy and minimizes medical cost and potential complications," Dr Malhotra and coauthors write. For the patients studied, median life expectancy after leaving the hospital was less than three months.

The researchers note that their equations had a wide statistical range, indicating that they are best used for patients expected to survive only a short time. But for these patients, the study equation will provide a useful starting point, allowing patients to spend more of their final days at home rather than in the hospital. Dr Mahtola and colleagues plan further research—including data on side effects and quality of life—to refine their equations and better evaluate the benefits of intrathecal analgesia for intractable cancer pain.

Read the article in Anesthesia & Analgesia

About the IARS

The International Anesthesia Research Society is a nonpolitical, not-for-profit medical society founded in 1922 to advance and support scientific research and education related to anesthesia, and to improve patient care through basic research. The IARS contributes nearly $1 million annually to fund anesthesia research; provides a forum for anesthesiology leaders to share information and ideas; maintains a worldwide membership of more than 15,000 physicians, physician residents, and others with doctoral degrees, as well as health professionals in anesthesia related practice; sponsors the SmartTots initiative in partnership with the FDA; and publishes the monthly journal Anesthesia & Analgesia in print and online.

About Anesthesia & Analgesia

Anesthesia & Analgesia was founded in 1922 and was issued bi-monthly until 1980, when it became a monthly publication. A&A is the leading journal for anesthesia clinicians and researchers and includes more than 500 articles annually in all areas related to anesthesia and analgesia, such as cardiovascular anesthesiology, patient safety, anesthetic pharmacology, and pain management. The journal is published on behalf of the IARS by Lippincott Williams & Wilkins (LWW), a division of Wolters Kluwer Health.

Nancy Lynly | EurekAlert!
Further information:
http://www.lww.com

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>