Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New approach may allow faster spinal anesthesia for cancer patients at end of life

For patients with uncontrolled pain, simple equations could mean fewer days in the hospital

For patients with uncontrolled pain from terminal cancer, a new approach to calculating initial dosage may allow a quicker start of spinal analgesia—and less time in the hospital, according to a study in the June issue of Anesthesia & Analgesia, official journal of the International Anesthesia Research Society (IARS).

Led by Dr Vivek Tim Malhotra of Memorial Sloan Kettering Cancer Center, New York, the researchers developed a set of equations for estimating the initial dose of intrathecal spinal pain relievers, thus avoiding the need for a trial period of epidural anesthesia in the hospital. The researchers hope their method will shorten the time to satisfactory pain control in patients with pain from advanced cancer, allowing them to spend more of their remaining days at home.

New Equations for Estimating Intrathecal Analgesia Dose

Intrathecal analgesia is an important option for "intractable" cancer pain that no longer responds to oral or injected pain medications. In this technique, a catheter is placed in the intrathecal space around the spinal cord, with individualized doses of strong opioid pain relievers given through a drug pump. The standard approach to determining the initial dose is a trial period of another type of spinal drug injection—epidural analgesia—performed in the hospital.

However, by the time patients are referred to a pain specialist for spinal analgesia, they typically have advanced cancer with limited life expectancy. Dr Malhotra and colleagues were looking for some way of calculating the initial intrathecal analgesia dose without the need for an epidural trial.

The researchers performed an in-depth analysis of 46 patients, treated over a six-year period, who underwent an epidural drug trial before intrathecal analgesia. The goal was to develop a way of predicting the initial intrathecal dose based on the patient's last oral or injected ("systemic") drug dosage.

Based on this and other factors—including the patient's age, type of pain, type of cancer, and pain severity score—the researchers were able to develop relatively simple equations for predicting the initial intrathecal opioid dose needed to control the patients' pain. The equations provided at least a guideline for estimating the initial spinal analgesia dose, while avoiding the need for an epidural trial.

In the 46 patients studied, time spent in the hospital for placement of the spinal catheter and epidural trial was between 9 and 17 days. Dr Malhotra and coauthors estimated that using the study equations—and avoiding the need for an epidural trial—could reduce hospital days by about half.

"This reduces time in the hospital for those with an already limited life expectancy and minimizes medical cost and potential complications," Dr Malhotra and coauthors write. For the patients studied, median life expectancy after leaving the hospital was less than three months.

The researchers note that their equations had a wide statistical range, indicating that they are best used for patients expected to survive only a short time. But for these patients, the study equation will provide a useful starting point, allowing patients to spend more of their final days at home rather than in the hospital. Dr Mahtola and colleagues plan further research—including data on side effects and quality of life—to refine their equations and better evaluate the benefits of intrathecal analgesia for intractable cancer pain.

Read the article in Anesthesia & Analgesia

About the IARS

The International Anesthesia Research Society is a nonpolitical, not-for-profit medical society founded in 1922 to advance and support scientific research and education related to anesthesia, and to improve patient care through basic research. The IARS contributes nearly $1 million annually to fund anesthesia research; provides a forum for anesthesiology leaders to share information and ideas; maintains a worldwide membership of more than 15,000 physicians, physician residents, and others with doctoral degrees, as well as health professionals in anesthesia related practice; sponsors the SmartTots initiative in partnership with the FDA; and publishes the monthly journal Anesthesia & Analgesia in print and online.

About Anesthesia & Analgesia

Anesthesia & Analgesia was founded in 1922 and was issued bi-monthly until 1980, when it became a monthly publication. A&A is the leading journal for anesthesia clinicians and researchers and includes more than 500 articles annually in all areas related to anesthesia and analgesia, such as cardiovascular anesthesiology, patient safety, anesthetic pharmacology, and pain management. The journal is published on behalf of the IARS by Lippincott Williams & Wilkins (LWW), a division of Wolters Kluwer Health.

Nancy Lynly | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>