Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anxious girls' brains work harder

06.06.2012
In a discovery that could help in the identification and treatment of anxiety disorders, Michigan State University scientists say the brains of anxious girls work much harder than those of boys.
The finding stems from an experiment in which college students performed a relatively simple task while their brain activity was measured by an electrode cap. Only girls who identified themselves as particularly anxious or big worriers recorded high brain activity when they made mistakes during the task.

Jason Moser, lead investigator on the project, said the findings may ultimately help mental health professionals determine which girls may be prone to anxiety problems such as obsessive compulsive disorder or generalized anxiety disorder.

“This may help predict the development of anxiety issues later in life for girls,” said Moser, assistant professor of psychology. “It’s one more piece of the puzzle for us to figure out why women in general have more anxiety disorders.”

The study, reported in the International Journal of Psychophysiology, is the first to measure the correlation between worrying and error-related brain responses in the sexes using a scientifically viable sample (79 female students, 70 males).

Participants were asked to identify the middle letter in a series of five-letter groups on a computer screen. Sometimes the middle letter was the same as the other four (“FFFFF”) while sometimes it was different (“EEFEE”). Afterward they filled out questionnaires about how much they worry.

Although the worrisome female subjects performed about the same as the males on simple portions of the task, their brains had to work harder at it. Then, as the test became more difficult, the anxious females performed worse, suggesting worrying got in the way of completing the task, Moser said.

“Anxious girls’ brains have to work harder to perform tasks because they have distracting thoughts and worries,” Moser said. “As a result their brains are being kind of burned out by thinking so much, which might set them up for difficulties in school. We already know that anxious kids – and especially anxious girls – have a harder time in some academic subjects such as math.”

Currently Moser and other MSU researchers are investigating whether estrogen, a hormone more common in women, may be responsible for the increased brain response. Estrogen is known to affect the release of dopamine, a neurotransmitter that plays a key role in learning and processing mistakes in the front part of the brain.

“This may end up reflecting hormone differences between men and women,” Moser said.

In addition to traditional therapies for anxiety, Moser said other ways to potentially reduce worry and improve focus include journaling – or “writing your worries down in a journal rather than letting them stick in your head” – and doing “brain games” designed to improve memory and concentration.

The study was co-authored by Tim P. Moran, a graduate student in MSU’s Department of Psychology, and MSU alum Danielle Taylor.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world’s most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Jason Moser | EurekAlert!
Further information:
http://www.msu.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>