Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anxious girls' brains work harder

06.06.2012
In a discovery that could help in the identification and treatment of anxiety disorders, Michigan State University scientists say the brains of anxious girls work much harder than those of boys.
The finding stems from an experiment in which college students performed a relatively simple task while their brain activity was measured by an electrode cap. Only girls who identified themselves as particularly anxious or big worriers recorded high brain activity when they made mistakes during the task.

Jason Moser, lead investigator on the project, said the findings may ultimately help mental health professionals determine which girls may be prone to anxiety problems such as obsessive compulsive disorder or generalized anxiety disorder.

“This may help predict the development of anxiety issues later in life for girls,” said Moser, assistant professor of psychology. “It’s one more piece of the puzzle for us to figure out why women in general have more anxiety disorders.”

The study, reported in the International Journal of Psychophysiology, is the first to measure the correlation between worrying and error-related brain responses in the sexes using a scientifically viable sample (79 female students, 70 males).

Participants were asked to identify the middle letter in a series of five-letter groups on a computer screen. Sometimes the middle letter was the same as the other four (“FFFFF”) while sometimes it was different (“EEFEE”). Afterward they filled out questionnaires about how much they worry.

Although the worrisome female subjects performed about the same as the males on simple portions of the task, their brains had to work harder at it. Then, as the test became more difficult, the anxious females performed worse, suggesting worrying got in the way of completing the task, Moser said.

“Anxious girls’ brains have to work harder to perform tasks because they have distracting thoughts and worries,” Moser said. “As a result their brains are being kind of burned out by thinking so much, which might set them up for difficulties in school. We already know that anxious kids – and especially anxious girls – have a harder time in some academic subjects such as math.”

Currently Moser and other MSU researchers are investigating whether estrogen, a hormone more common in women, may be responsible for the increased brain response. Estrogen is known to affect the release of dopamine, a neurotransmitter that plays a key role in learning and processing mistakes in the front part of the brain.

“This may end up reflecting hormone differences between men and women,” Moser said.

In addition to traditional therapies for anxiety, Moser said other ways to potentially reduce worry and improve focus include journaling – or “writing your worries down in a journal rather than letting them stick in your head” – and doing “brain games” designed to improve memory and concentration.

The study was co-authored by Tim P. Moran, a graduate student in MSU’s Department of Psychology, and MSU alum Danielle Taylor.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world’s most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Jason Moser | EurekAlert!
Further information:
http://www.msu.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>