Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibiotic may reduce stroke risk and injury in diabetics

25.08.2010
A daily dose of an old antibiotic may help diabetics avoid a stroke or at least minimize its damage, Medical College of Georgia researchers report.

Minocycline, a drug already under study at MCG for stroke treatment, may help diabetics reduce remodeling of blood vessels in the brain that increases their stroke risk and help stop bleeding that often follows a stroke, said Dr. Adviye Ergul, physiologist in the MCG Schools of Medicine and Graduate Studies.

"We know that diabetes is bad and that diabetics have more strokes and that when they have a stroke they do more poorly," said Ergul, corresponding author on the study published in the Journal of Cerebral Blood Flow and Metabolism. Nearly 70 percent of the estimated 24 million Americans with diabetes list a major vascular event such as a stroke or heart attack as a cause of death, according to the American Diabetes Association.

To figure out why, the researchers focused on the blood vessels of diabetic rats, finding that even moderately elevated blood glucose levels can result in thicker, twisted blood vessels that tend to leak, resulting in the bleeding that can follow a stroke. Clot-based strokes are the most common type while hemorrhagic strokes tend to be most lethal. But diabetics are at risk for a sort of combination in which a clot causes the stroke and leaking from the blood vessels follows – called hemorrhagic transformation – a scenario that can dramatically worsen the stroke's effect, Ergul said.

Much of the bad vascular remodeling that occurs in diabetes results from elevated glucose activating matrix metalloproteinases or MMPs. "They break down things and allow for cells to move so blood vessels change shape," Ergul said. They also destroy the basement membrane of blood vessels, allowing the destructive bleeding that often follows a diabetic stroke. On the good side, MMPs help clean up damage to enable repair and recovery.

One way minocycline works is by blocking MMPs. Less directly, diabetes drugs like metformin, used to lower blood sugar, also reduce MMP levels.

Another MCG research team, led by Dr. David Hess, stroke specialist and chairman of the Department of Neurology, is showing that minocycline given alone or with tPA, the clot dissolver that is the only FDA-approved stroke treatment, can also work after a stroke to help minimize damage. One great synergy about the pair is that tPA increases bleeding risk and minocycline decreases it.

That could particularly benefit diabetics who already are at increased risk for bleeding, particularly when oxygen is restored to that area of the brain. This damage – called a reperfusion injury – is a primary reason that a diabetic stroke may look small on a magnetic resonance image but can have a devastating, effect, Ergul also has found.

Some of her next studies will include giving both tPA and minocycline to diabetic rats to study bleeding and the impact of the two drugs on blood vessels, particularly the tiny ones that are tightly connected to brain cells.

The research was funded by the National Institutes of Health, the American Heart Association and the Department of Veterans Affairs.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>