Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adding up autism risks

15.10.2012
The causes of autism and autism spectrum disorder (ASD) are complex, and contain elements of both nature (genes) and the environment. New research published in BioMed Central's open access journal Molecular Autism shows that common genetic polymorphisms (genetic variation) can add up to an increased risk of ASD.

The contribution of inheritance and genetic mutation versus environmental factors to the risk of ASD is hotly debated. Most twin studies show the contribution heavily tilted toward inheritance, but the exact amount of involvement of genes in ASD risk is less apparent.

This is because, while the impact of rare genetic variations on ASD risk is becoming clear, the role of more common variations, so called single nucleotide polymorphisms (SNP), remains unresolved.

In a vast project involving researchers across the USA, genetic data from families in the Simons Simplex Collection (where one child, but neither parent or any brothers or sisters, have ASD) and the Autism Genome Project (where one or more children were affected), was compared to families from the HealthABC program a cross section of the population).

By analyzing one million of the common variations in each participant's genome, it became clear that, in families where only one child is affected, 40% of the risk of ASD is inherited. In families where more than one child is affected this increased to over 60%. By looking in more detail at the unaffected parents and siblings of children with ASD it appeared that the inherited risk was additive.

Prof Bernie Devlin, from the University of Pittsburgh, explained, "Each of the common variations involved in ASD has little effect on its own, however our results show that they add up. This could explain why, while the parents might each not show any symptoms, their children receive enough of the risk versions to be affected."

Overall these results suggest that there are a large number of common variants each with a very small effect. Prof Devlin continued, "This is a large step forward in our understanding of ASD. The genetic components alone are far more complex than many imagined a decade ago, including the additive effects we have found, rare inherited mutations, and new mutations arising spontaneously before conception."

Editors-in-Chief, Drs. Buxbaum and Baron-Cohen noted that this study represents "An exceptionally important breakthrough in our understanding of autism risk". They also note that, "The interplay between common SNP and rare risk variants could be key to understanding the considerable differences in presentation seen among individuals with an autism spectrum condition".

Media contact
Dr Hilary Glover
Scientific Press Officer, BioMed Central
Tel: +44 (0) 20 3192 2370
Mob: +44 (0) 778 698 1967
Email: hilary.glover@biomedcentral.com
Notes
1. Common genetic variants, acting additively, are a major source of risk for autism Lambertus Klei, Stephan J Sanders, Michael T Murtha, Vanessa Hus, Jennifer K Lowe, A. Jeremy Willsey, Daniel Moreno-De-Luca, Timothy W Yu, Eric Fombonne, Daniel Geschwind, Dorothy E Grice, David H Ledbetter, Catherine Lord, Shrikant M Mane, Christa Lese Martin, Donna M Martin, Eric M Morrow, Christopher A Walsh, Nadine M Melhem, Pauline Chaste, James S Sutcliffe, Matthew W State, Edwin H Cook Jr, Kathryn Roeder and Bernie Devlin Molecular Autism (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request on the day of publication.

2. Molecular Autism is a peer-reviewed, online open access journal that publishes high-quality basic, translational and clinical research that has relevance to the etiology, pathobiology, or treatment of autism and related neurodevelopmental conditions. @MolecularAutism

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector. @BioMedCentral

Dr Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>