Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adding up autism risks

15.10.2012
The causes of autism and autism spectrum disorder (ASD) are complex, and contain elements of both nature (genes) and the environment. New research published in BioMed Central's open access journal Molecular Autism shows that common genetic polymorphisms (genetic variation) can add up to an increased risk of ASD.

The contribution of inheritance and genetic mutation versus environmental factors to the risk of ASD is hotly debated. Most twin studies show the contribution heavily tilted toward inheritance, but the exact amount of involvement of genes in ASD risk is less apparent.

This is because, while the impact of rare genetic variations on ASD risk is becoming clear, the role of more common variations, so called single nucleotide polymorphisms (SNP), remains unresolved.

In a vast project involving researchers across the USA, genetic data from families in the Simons Simplex Collection (where one child, but neither parent or any brothers or sisters, have ASD) and the Autism Genome Project (where one or more children were affected), was compared to families from the HealthABC program a cross section of the population).

By analyzing one million of the common variations in each participant's genome, it became clear that, in families where only one child is affected, 40% of the risk of ASD is inherited. In families where more than one child is affected this increased to over 60%. By looking in more detail at the unaffected parents and siblings of children with ASD it appeared that the inherited risk was additive.

Prof Bernie Devlin, from the University of Pittsburgh, explained, "Each of the common variations involved in ASD has little effect on its own, however our results show that they add up. This could explain why, while the parents might each not show any symptoms, their children receive enough of the risk versions to be affected."

Overall these results suggest that there are a large number of common variants each with a very small effect. Prof Devlin continued, "This is a large step forward in our understanding of ASD. The genetic components alone are far more complex than many imagined a decade ago, including the additive effects we have found, rare inherited mutations, and new mutations arising spontaneously before conception."

Editors-in-Chief, Drs. Buxbaum and Baron-Cohen noted that this study represents "An exceptionally important breakthrough in our understanding of autism risk". They also note that, "The interplay between common SNP and rare risk variants could be key to understanding the considerable differences in presentation seen among individuals with an autism spectrum condition".

Media contact
Dr Hilary Glover
Scientific Press Officer, BioMed Central
Tel: +44 (0) 20 3192 2370
Mob: +44 (0) 778 698 1967
Email: hilary.glover@biomedcentral.com
Notes
1. Common genetic variants, acting additively, are a major source of risk for autism Lambertus Klei, Stephan J Sanders, Michael T Murtha, Vanessa Hus, Jennifer K Lowe, A. Jeremy Willsey, Daniel Moreno-De-Luca, Timothy W Yu, Eric Fombonne, Daniel Geschwind, Dorothy E Grice, David H Ledbetter, Catherine Lord, Shrikant M Mane, Christa Lese Martin, Donna M Martin, Eric M Morrow, Christopher A Walsh, Nadine M Melhem, Pauline Chaste, James S Sutcliffe, Matthew W State, Edwin H Cook Jr, Kathryn Roeder and Bernie Devlin Molecular Autism (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request on the day of publication.

2. Molecular Autism is a peer-reviewed, online open access journal that publishes high-quality basic, translational and clinical research that has relevance to the etiology, pathobiology, or treatment of autism and related neurodevelopmental conditions. @MolecularAutism

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector. @BioMedCentral

Dr Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>