Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acupuncture's molecular effects pinned down

31.05.2010
New insights spur effort to boost treatment's impact significantly
Scientists have taken another important step toward understanding just how sticking needles into the body can ease pain.

In a paper published online May 30 in Nature Neuroscience, a team at the University of Rochester Medical Center identifies the molecule adenosine as a central player in parlaying some of the effects of acupuncture in the body. Building on that knowledge, scientists were able to triple the beneficial effects of acupuncture in mice by adding a medication approved to treat leukemia in people.

The research focuses on adenosine, a natural compound known for its role in regulating sleep, for its effects on the heart, and for its anti-inflammatory properties. But adenosine also acts as a natural painkiller, becoming active in the skin after an injury to inhibit nerve signals and ease pain in a way similar to lidocaine.

In the current study, scientists found that the chemical is also very active in deeper tissues affected by acupuncture. The Rochester researchers looked at the effects of acupuncture on the peripheral nervous system – the nerves in our body that aren't part of the brain and spinal cord. The research complements a rich, established body of work showing that in the central nervous system, acupuncture creates signals that cause the brain to churn out natural pain-killing endorphins.

The new findings add to the scientific heft underlying acupuncture, said neuroscientist Maiken Nedergaard, M.D., D.M.Sc., who led the research. Her team is presenting the work this week at a scientific meeting, Purines 2010, in Barcelona, Spain.

"Acupuncture has been a mainstay of medical treatment in certain parts of the world for 4,000 years, but because it has not been understood completely, many people have remained skeptical," said Nedergaard, co-director of the University's Center for Translational Neuromedicine, where the research was conducted.

"In this work, we provide information about one physical mechanism through which acupuncture reduces pain in the body," she added.

To do the experiment, the team performed acupuncture treatments on mice that had discomfort in one paw. The mice each received a 30-minute acupuncture treatment at a well known acupuncture point near the knee, with very fine needles rotated gently every five minutes, much as is done in standard acupuncture treatments with people.

The team made a number of observations regarding adenosine:

In mice with normal functioning levels of adenosine, acupuncture reduced discomfort by two-thirds.

In special "adenosine receptor knock-out mice" not equipped with the adenosine receptor, acupuncture had no effect.

When adenosine was turned on in the tissues, discomfort was reduced even without acupuncture.

During and immediately after an acupuncture treatment, the level of adenosine in the tissues near the needles was 24 times greater than before the treatment.

Once scientists recognized adenosine's role, the team explored the effects of a cancer drug called deoxycoformycin, which makes it harder for the tissue to remove adenosine. The compound boosted the effects of acupuncture treatment dramatically, nearly tripling the accumulation of adenosine in the muscles and more than tripling the length of time the treatment was effective.

"It's clear that acupuncture may activate a number of different mechanisms," said Josephine P. Briggs, M.D., director of the National Center for Complementary and Alternative Medicine at the National Institutes of Health. "This carefully performed study identifies adenosine as a new player in the process. It's an interesting contribution to our growing understanding of the complex intervention which is acupuncture," added Briggs, who is the spouse of co-author Jurgen Schnermann.

The paper includes three first co-authors: Nanna Goldman, technical associate Michael Chen, and post-doctoral associate Takumi Fujita. Other authors from Rochester include Qiwu Xu; medical student Tina Jensen; former student Wei Liu and former post-doctoral associate Yong Pei; assistant professors Takahiro Takano and Kim Tieu; and research assistant professors Weiguo Peng, Fushun Wang, Xiaoning Han, and Lane Bekar. Also contributing were Jiang-Fan Chen from Boston University and Jürgen Schnermann from the National Institute of Diabetes and Digestive and Kidney Diseases.

Funding for the work came from the New York State Spinal Cord Injury Program and the National Institutes of Health.

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>