Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acupuncture's molecular effects pinned down

31.05.2010
New insights spur effort to boost treatment's impact significantly
Scientists have taken another important step toward understanding just how sticking needles into the body can ease pain.

In a paper published online May 30 in Nature Neuroscience, a team at the University of Rochester Medical Center identifies the molecule adenosine as a central player in parlaying some of the effects of acupuncture in the body. Building on that knowledge, scientists were able to triple the beneficial effects of acupuncture in mice by adding a medication approved to treat leukemia in people.

The research focuses on adenosine, a natural compound known for its role in regulating sleep, for its effects on the heart, and for its anti-inflammatory properties. But adenosine also acts as a natural painkiller, becoming active in the skin after an injury to inhibit nerve signals and ease pain in a way similar to lidocaine.

In the current study, scientists found that the chemical is also very active in deeper tissues affected by acupuncture. The Rochester researchers looked at the effects of acupuncture on the peripheral nervous system – the nerves in our body that aren't part of the brain and spinal cord. The research complements a rich, established body of work showing that in the central nervous system, acupuncture creates signals that cause the brain to churn out natural pain-killing endorphins.

The new findings add to the scientific heft underlying acupuncture, said neuroscientist Maiken Nedergaard, M.D., D.M.Sc., who led the research. Her team is presenting the work this week at a scientific meeting, Purines 2010, in Barcelona, Spain.

"Acupuncture has been a mainstay of medical treatment in certain parts of the world for 4,000 years, but because it has not been understood completely, many people have remained skeptical," said Nedergaard, co-director of the University's Center for Translational Neuromedicine, where the research was conducted.

"In this work, we provide information about one physical mechanism through which acupuncture reduces pain in the body," she added.

To do the experiment, the team performed acupuncture treatments on mice that had discomfort in one paw. The mice each received a 30-minute acupuncture treatment at a well known acupuncture point near the knee, with very fine needles rotated gently every five minutes, much as is done in standard acupuncture treatments with people.

The team made a number of observations regarding adenosine:

In mice with normal functioning levels of adenosine, acupuncture reduced discomfort by two-thirds.

In special "adenosine receptor knock-out mice" not equipped with the adenosine receptor, acupuncture had no effect.

When adenosine was turned on in the tissues, discomfort was reduced even without acupuncture.

During and immediately after an acupuncture treatment, the level of adenosine in the tissues near the needles was 24 times greater than before the treatment.

Once scientists recognized adenosine's role, the team explored the effects of a cancer drug called deoxycoformycin, which makes it harder for the tissue to remove adenosine. The compound boosted the effects of acupuncture treatment dramatically, nearly tripling the accumulation of adenosine in the muscles and more than tripling the length of time the treatment was effective.

"It's clear that acupuncture may activate a number of different mechanisms," said Josephine P. Briggs, M.D., director of the National Center for Complementary and Alternative Medicine at the National Institutes of Health. "This carefully performed study identifies adenosine as a new player in the process. It's an interesting contribution to our growing understanding of the complex intervention which is acupuncture," added Briggs, who is the spouse of co-author Jurgen Schnermann.

The paper includes three first co-authors: Nanna Goldman, technical associate Michael Chen, and post-doctoral associate Takumi Fujita. Other authors from Rochester include Qiwu Xu; medical student Tina Jensen; former student Wei Liu and former post-doctoral associate Yong Pei; assistant professors Takahiro Takano and Kim Tieu; and research assistant professors Weiguo Peng, Fushun Wang, Xiaoning Han, and Lane Bekar. Also contributing were Jiang-Fan Chen from Boston University and Jürgen Schnermann from the National Institute of Diabetes and Digestive and Kidney Diseases.

Funding for the work came from the New York State Spinal Cord Injury Program and the National Institutes of Health.

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>