Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Step Toward Better Brain Implants Using Conducting Polymer Nanotubes

01.10.2009
Brain implants that can more clearly record signals from surrounding neurons in rats have been created at the University of Michigan. The findings could eventually lead to more effective treatment of neurological disorders such as Parkinson's disease and paralysis.

Neural electrodes must work for time periods ranging from hours to years. When the electrodes are implanted, the brain first reacts to the acute injury with an inflammatory response. Then the brain settles into a wound-healing, or chronic, response.

It's during this secondary response that brain tissue starts to encapsulate the electrode, cutting it off from communication with surrounding neurons.

The new brain implants developed at U-M are coated with nanotubes made of poly(3,4-ethylenedioxythiophene) (PEDOT), a biocompatible and electrically conductive polymer that has been shown to record neural signals better than conventional metal electrodes.

U-M researchers found that PEDOT nanotubes enhanced high-quality unit activity (signal-to-noise ratio >4) about 30 percent more than the uncoated sites. They also found that based on in vivo impedance data, PEDOT nanotubes might be used as a novel method for biosensing to indicate the transition between acute and chronic responses in brain tissue.

The results are featured in the cover article of the Oct. 5 issue of the journal Advanced Materials. The paper is titled, "Interfacing Conducting Polymer Nanotubes with the Central Nervous System: Chronic Neural Recording using Poly(3-4-ethylenedioxythiophene) Nanotubes."

"Microelectrodes implanted in the brain are increasingly being used to treat neurological disorders," said Mohammad Reza Abidian, a post-doctoral researcher working with Professor Daryl Kipke in the Neural Engineering Laboratory at the U-M Department of Biomedical Engineering.

"Moreover, these electrodes enable neuroprosthetic devices, which hold the promise to return functionality to individuals with spinal cord injuries and neurodegenerative diseases. However, robust and reliable chronic application of neural electrodes remains a challenge."

In the experiment, the researchers implanted two neural microelectrodes in the brains of three rats. PEDOT nanotubes were fabricated on the surface of every other recording site by using a nanofiber templating method. Over the course of seven weeks, researchers monitored the electrical impedance of the recording sites and measured the quality of recording signals.

PEDOT nanotubes in the coating enable the electrodes to operate with less electrical resistance than current metal electrode sites, which means they can communicate more clearly with individual neurons.

"Conducting polymers are biocompatible and have both electronic and ionic conductivity," Abidian said. "Therefore, these materials are good candidates for biomedical applications such as neural interfaces, biosensors and drug delivery systems."

In the experiments, the Michigan researchers applied PEDOT nanotubes to microelectrodes provided by the U-M Center for Neural Communication Technology. The PEDOT nanotube coatings were developed in the laboratory of David C. Martin, now an adjunct professor of materials science and engineering, macromolecular science and engineering, and biomedical engineering. Martin is currently the Karl W. Böer Professor and Chair of the Materials Science and Engineering Department at the University of Delaware.

Martin is also co-founder and chief scientific officer for Biotectix, a U-M spinoff company located in Ann Arbor. The company is working to commercialize conducting polymer-based coatings for a variety of biomedical devices

In previous experiments, Abidian and his colleagues have shown that PEDOT nanotubes could carry with them drugs to prevent encapsulation.

"This study paves the way for smart recording electrodes that can deliver drugs to alleviate the immune response of encapsulation," Abidian said.

The research is funded by the Army Research Office, Center for Neural Communication Technology and National Institutes of Health.

Full text of article: http://www3.interscience.wiley.com/cgi-bin/fulltext/122525755/PDFSTART

High-resolution illustration: http://umich.edu/news/index_nr.html?Releases/2009/Sep09/brain

Mohammad Reza Abidian: http://www-personal.umich.edu/~mabidian/

The University of Michigan's College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of the largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world-class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create the Michigan Difference.

Byron Roberts | Newswise Science News
Further information:
http://www.engin.umich.edu

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>