Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new way to diagnose malaria

01.09.2014

Using magnetic fields, technique can detect parasite's waste products in infected blood cells

Over the past several decades, malaria diagnosis has changed very little. After taking a blood sample from a patient, a technician smears the blood across a glass slide, stains it with a special dye, and looks under a microscope for the Plasmodium parasite, which causes the disease. This approach gives an accurate count of how many parasites are in the blood — an important measure of disease severity — but is not ideal because there is potential for human error.

A research team from the Singapore-MIT Alliance for Research and Technology (SMART) has now come up with a possible alternative. The researchers have devised a way to use magnetic resonance relaxometry (MRR), a close cousin of magnetic resonance imaging (MRI), to detect a parasitic waste product in the blood of infected patients. This technique could offer a more reliable way to detect malaria, says Jongyoon Han, a professor of electrical engineering and biological engineering at MIT.

"There is real potential to make this into a field-deployable system, especially since you don't need any kind of labels or dye. It's based on a naturally occurring biomarker that does not require any biochemical processing of samples" says Han, one of the senior authors of a paper describing the technique in the Aug. 31 issue of Nature Medicine.

Peter Rainer Preiser of SMART and Nanyang Technical University in Singapore is also a senior author. The paper's lead author is Weng Kung Peng, a research scientist at SMART.

Hunting malaria with magnets

With the traditional blood-smear technique, a technician stains the blood with a reagent that dyes cell nuclei. Red blood cells don't have nuclei, so any that show up are presumed to belong to parasite cells. However, the technology and expertise needed to identify the parasite are not always available in some of the regions most affected by malaria, and technicians don't always agree in their interpretations of the smears, Han says.

"There's a lot of human-to-human variation regarding what counts as infected red blood cells versus some dust particles stuck on the plate. It really takes a lot of practice," he says.

The new SMART system detects a parasitic waste product called hemozoin. When the parasites infect red blood cells, they feed on the nutrient-rich hemoglobin carried by the cells. As hemoglobin breaks down, it releases iron, which can be toxic, so the parasite converts the iron into hemozoin — a weakly paramagnetic crystallite.

Those crystals interfere with the normal magnetic spins of hydrogen atoms. When exposed to a powerful magnetic field, hydrogen atoms align their spins in the same direction. When a second, smaller field perturbs the atoms, they should all change their spins in synchrony — but if another magnetic particle, such as hemozoin, is present, this synchrony is disrupted through a process called relaxation. The more magnetic particles are present, the more quickly the synchrony is disrupted.

"What we are trying to really measure is how the hydrogen's nuclear magnetic resonance is affected by the proximity of other magnetic particles," Han says.

For this study, the researchers used a 0.5-tesla magnet, much less expensive and powerful than the 2- or 3-tesla magnets typically required for MRI diagnostic imaging, which can cost up to $2 million. The current device prototype is small enough to sit on a table or lab bench, but the team is also working on a portable version that is about the size of a small electronic tablet.

After taking a blood sample and spinning it down to concentrate the red blood cells, the sample analysis takes less than a minute. Only about 10 microliters of blood is required, which can be obtained with a finger prick, making the procedure minimally invasive and much easier for health care workers than drawing blood intravenously.

"This system can be built at a very low cost, relative to the million-dollar MRI machines used in a hospital," Peng says. "Furthermore, since this technique does not rely on expensive labeling with chemical reagents, we are able to get each diagnostic test done at a cost of less than 10 cents."

Tracking infection

Hemozoin crystals are produced in all four stages of malaria infection, including the earliest stages, and are generated by all known species of the Plasmodium parasite. Also, the amount of hemozoin can reveal how severe the infection is, or whether it is responding to treatment. "There are a lot of scenarios where you want to see the number, rather than a yes or no answer," Han says.

In this paper, the researchers showed that they could detect Plasmodium falciparum, the most dangerous form of the parasite, in blood cells grown in the lab. They also detected the parasite in red blood cells from mice infected with Plasmodium berghei.

The researchers are launching a company to make this technology available at an affordable price. The team is also running field tests in Southeast Asia and is exploring powering the device on solar energy, an important consideration for poor rural areas.

###

The research was funded by the Singapore National Research Foundation through SMART.

Written by Anne Trafton, MIT News Office

Sarah McDonnell | Eurek Alert!
Further information:
http://www.mit.edu

Further reports about: MRI Massachusetts Plasmodium Technology blood hemozoin malaria measure nuclei parasite technique

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>