Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A major step forward in the battle against leukemia and lymphoma

12.02.2013
An international research effort in which the University of Essen was a participant has produced results which lay the foundation for a totally new approach to the treatment of leukemia and lymphoma. These results have now been published in the prestigious journal Cancer Cell*.
The first author of the article describing the breakthrough is Dr. Cyrus Khandanpour from the Department of Hematology of the West German Cancer Center at Essen University Hospital. Khandanpour has been involved in this effort since working as a postdoc on the research team headed by Prof. Tarik Möröy, who was previously a professor at the University of Duisburg-Essen and is now head of the Institut de recherches cliniques de Montreal in Canada.

The various types of leukemia and lymphoma account for only three to five percent of all malignancies. However, in up to 80 percent of the affected patients, even intensive treatment fails to produce a cure. “We went straight to the heart of the matter and examined exactly how the various genes participating in the origin and development of leukemia interact. I am now convinced that these results will also serve as starting points for new treatment strategies,” stated Khandanpour. One of the aspects his research group is looking at especially closely is the role played by the transcription factor Gfi1.

This has in fact proved to be the decisive key. Working together with various international research groups in Canada and the U.S. (Prof. Leighton. L. Grimes and Dr. James Phelan, Cincinnati). Khandanpour and Moroy examined the impact of Gfi1 on the origin and development of leukemia and lymphoma. In the absence of Gf1 a different course, remission or complete healing even without chemotherapy is observed in patients with leukemia. This has been clearly demonstrated in experiments with mice models. The results of the first studies carried out with human leukemia cells have confirmed that Gfi1 plays an important role there as well. When Gfi1 is lost, human leukemia also disappears.

These promising results will now be explored further in another study at the University Clinic of Essen, exploring the possibility of targeting Gfi1 to cure human leukemia. The work will be carried out at various locations. The work was supported among others by the Max Eder Program of the Deutsche Krebshilfe (German Cancer Aid) the IFORES program at Essen University Hospital and the Cole foundation.

* Cyrus Khandanpour, James D. Phelan, Lothar Vassen, Judith Schütte, Riyan Chen1, Shane R. Horman, Marie-Claude Gaudreau, Joseph Krongold, Jinfang Zhu, William E. Paul, Ulrich Dührsen, Bertie Göttgens, H. Leighton Grimes, and Tarik Möröy.
Growth factor independent-1antagonizes a p53-induced DNA damage response pathway in lymphoblastic leukemia Cancer Cell, in press

For further information, contact:
• Prof. Dr. med. Ulrich Dührsen, Tel: +49 (0) 201/723-2417, ulrich.duehrsen@uk-essen.de (Head of department of hematology at University Clinic Essen)
• Dr. med. Cyrus Khandanpour, Tel. +49 (0) 201/723-85185, +49 (0) 151-44543324, cyrus.khandanpour@uk-essen.de,

• Prof: Dr. rer. nat. Tarik Möröy, Tel 0015149875764, Tarik.moroy@ircm.qc.ca (corresponding senior author of the study, president of the IRCM)

Beate Kostka | idw
Further information:
http://www.uni-duisburg-essen.de/

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>