Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A holistic approach catches eye disease early

An automated assessment of multiple datasets using artificial intelligence accurately diagnoses a common cause of blindness

Pathological myopia is a condition characterized by severe, progressive nearsightedness caused by the protrusion of pigmented tissue from the back of the eye.

The disease is one of the leading causes of blindness worldwide and the leading cause in Asian countries. Early diagnosis is essential for preventing permanent loss of vision but heavily relies on manual screening and involves a complete eye exam, which can take up to an hour.

Zhuo Zhang of the A*STAR Institute for Infocomm Research in Singapore and her colleagues have now developed an automated, computer-assisted informatics method that uses artificial intelligence to diagnose the condition accurately1.

In earlier work, Zhang and her colleagues developed an algorithm that could extract information about tissue texture from biomedical images of the back of the eye, or fundus, and use it to detect pathological myopia with an accuracy of 87.5%. They then showed that combining the images with demographic data such as age, sex and ethnicity, improved the accuracy further.

The latest automated method — Pathological Myopia diagnosis through Biomedical and Image Informatics (PM-BMII) — takes the process one step further; it uses an artificial intelligence approach known as multiple kernel learning to fuse the demographic data and clinical fundus images with genomic information and then analyze the combined datasets (see image).

Zhang and her colleagues tested the method on data collected from 2,258 patients, 58 of whom had already been diagnosed with pathological myopia. They found that the method could detect the condition with a high degree of accuracy and that the combination of all three datasets was more accurate than any one alone or any two combined.

Combining the three datasets probably produced the best results because each set contains different information that complements the other sets, therefore providing a holistic assessment of the disease.

The researchers suggest that the method could also be applied to the detection of other eye diseases, “including age-related macular degeneration and glaucoma. These diseases have common characteristics,” says Zhang. “They result from both environmental and genetic risk factors, and can be observed from fundus images.”

Zhang adds that it is still unclear whether adding additional types of data to the analyses would improve the accuracy of the diagnoses. “More types of data may introduce complexity into the computational model, so we cannot draw the conclusion that accuracy would be improved without further investigation.”

The A*STAR-affiliated researchers contributing to this research are from the Institute for Infocomm Research

Journal information

Zhang, Z., Xu, Y., Liu, J., Wong, D. W. K., Kwoh, C. K. et al. Automatic diagnosis of pathological myopia from heterogeneous biomedical data. PLoS ONE 8, e65736 (2013).

A*STAR Research | Research asia research news
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>