Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A deficiency of dietary omega-3 may explain depressive behaviors

31.01.2011
Neuroscience of nutrition

How maternal essential fatty acid deficiency impact on its progeny is poorly understood. Dietary insufficiency in omega-3 fatty acid has been implicated in many disorders. Researchers from Inserm and INRA and their collaborators in Spain collaboration, have studied mice fed on a diet low in omega-3 fatty acid.

They discovered that reduced levels of omega-3 had deleterious consequences on synaptic functions and emotional behaviours. Details of this work are available in the online version of the journal Nature neuroscience, which can be accessed at: http://dx.doi.org/10.1038/nn.2736

In industrialized nations, diets have been impoverished in essential fatty acids since the beginning of the 20th century. The dietary ratio between omega-6 polyunsaturated fatty acid and omega-3 polyunsaturated fatty acid omega-3 increased continuously over the course of the 20th century. These fatty acids are "essential" lipids because the body cannot synthesize them from new. They must therefore be provided through food and their dietary balance is essential to maintain optimal brain functions.

Olivier Manzoni (Head of Research Inserm Unit 862, "Neurocentre Magendie", in Bordeaux and Unit 901 "Institut de Neurobiologie de la Méditerranée" in Marseille), and Sophie Layé (Head of Research at INRA Unit 1286, "Nutrition et Neurobiologie Intégrative" in Bordeaux) and their co-workers hypothesized that chronic malnutrition during intra-uterine development, may later influence synaptic activity involved in emotional behaviour (e.g. depression, anxiety) in adulthood.

To verify their hypotheses, the researchers studied mice fed a life-long diet imbalanced in omega-3 and omega-6 fatty acids. They found that omega-3 deficiency disturbed neuronal communication specifically. The researchers observed that only the cannabinoid receptors, which play a strategic role in neurotransmission, suffer a complete loss of function. This neuronal dysfunction was accompanied by depressive behaviours among the malnourished mice.

Among omega-3 deficient mice, the usual effects produced by cannabinoid receptor activation, on both the synaptic and behavioural levels, no longer appear. Thus, the CB1R receptors lose their synaptic activity and the antioxidant effect of the cannabinoids disappears.

Consequently, the researchers discovered that among mice subjected to an omega-3 deficient dietary regime, synaptic plasticity, which is dependent on the CB1R cannabinoid receptors, is disturbed in at least two structures involved with reward, motivation and emotional regulation: the prefrontal cortex and the nucleus accumbens. These parts of the brain contain a large number of CB1R cannabinoid receptors and have important functional connections with each other.

"Our results can now corroborate clinical and epidemiological studies which have revealed associations between an omega-3/omega-6 imbalance and mood disorders", explain Olivier Manzoni and Sophie Layé. "To determine if the omega-3 deficiency is responsible for these neuropsychiatric disorders additional studies are, of course, required".

In conclusion, the authors estimate that their results provide the first biological components of an explanation for the observed correlation between omega-3 poor diets, which are very widespread in the industrialized world, and mood disorders such as depression.

For more information

Source

« Nutritional Omega-3 deficiency abolishes endocannabinoid mediated neuronal functions »
Mathieu Lafourcade1,3#, Thomas Larrieu2,3#, Susana Mato4#, Anais Duffaud2,3,
Marja Sepers1,3, Isabelle Matias1,3, Veronique De Smedt2,3, Virginie Labrousse2,3,
Lionel Bretillon6, Carlos Matute4, Rafael Rodríguez-Puertas5, Sophie Layé2,3,¶,°

and Olivier J. Manzoni1,3,7,8,9, ¶,°

1 Unité Inserm 862, Physiopathology of Synaptic Plasticity Group, Neurocentre Magendie, 146 Rue Léo—Saignat, F 33077 Bordeaux Cedex, France.

2 INRA UMR 1286, CNRS UMR 5226, PsyNuGen, F 33077 Bordeaux Cedex, France.

3 University of Bordeaux, Bordeaux, F 33077, France.

4 Department of Neuroscience and 5 Department of Pharmacology, University of the Basque Country, 48940 Leioa, Bizkaia, Spain.

6 UMR1324 CGSA, INRA, 17 Rue Sully, 21065 Dijon, France.

7 Unité Inserm901, Marseille, 13009, France.

8 Université de la Méditerranée UMR S901 Aix-Marseille 2, France.

9 INMED, Marseille,

Nature Neuroscience, 30 janvier 2011 http://dx.doi.org/10.1038/nn.2736

Contacts chercheurs

Olivier Manzoni
Directeur de recherche Inserm
Tel.: 04 91 82 81 37
Mel : olivier.manzoni@inserm.fr
Sophie Layé
Directeur de recherche INRA
Tel: 05 57 57 12 32
Mel: sophie.laye@bordeaux.inra.fr

Séverine Ciancia | EurekAlert!
Further information:
http://www.inserm.fr

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>