Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A circuitous route to therapy resistance

27.06.2013
Gliomas are malignant brain tumors that arise from glial cells called astrocytes, found in the central nervous system.

"In treating malignant gliomas, we currently combine radiotherapy with the anticancer drug temozolomide. However, in some patients, tumors rapidly become resistant to both treatment methods," says neurooncologist Professor Dr. Michael Platten, who leads a cooperation unit of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) and the Department of Neurooncology of Heidelberg University Hospital. "We therefore urgently need new methods of treating these diseases more effectively."

Chemotherapy and radiotherapy damage the DNA of tumor cells. Normally these DNA defects automatically trigger the cellular suicide program known as apoptosis. However, tumor cells possess an efficient DNA repair system that they use to protect themselves from the consequences of therapy, thus evading cell death.

Key repair mechanisms in the cell can only work efficiently if a molecule called NAD+ is present. When DNA repair is running at full throttle, as is the case during radiation therapy, NAD+ supplies are quickly exhausted in a cancer cell, leading to DNA damage that goes unrepaired and ultimately cell death. Cancer researchers are therefore trying to use drugs to deprive cells of NAD+ to prevent resistance to therapies. Substances that inhibit the enzyme which produces NAD+ are already being tested in clinical trials.

However, cells can produce NAD+ in a number of ways. They can synthesize it directly, or use a substance called quinolinic acid, a metabolite of the protein building-block tryptophan, as an alternative source to produce NAD+. Michael Platten and his team had discovered that malignant gliomas contain large amounts of quinolinic acid. "We wanted to know whether gliomas might use this circuitous route in order to produce enough NAD+ and thus escape therapy," says neuropathologist Felix Sahm, first author of the publication.

If direct NAD+ production is blocked, malignant glioma cells, unlike normal astrocytes, increase production of QRPT. This enzyme breaks down quinolinic acid into NAD+. Therapies involving the anticancer drug temozolomide, radiation, or oxidative stress were found to lead to increased levels of QRPT in tumors. The higher the degree of malignancy of the gliomas that were investigated, the more QRPT they contained. Brain tumors that recurred after combined radiotherapy-chemotherapy had a poorer prognosis when the cancer cells produced high levels of quinolinic acid.

The researchers also discovered that the tumor cells are not capable of forming quinolinic acid on their own. Instead, the substance is produced by immune cells called microglia, which migrate in large quantities into gliomas. Microglia cells may constitute up to 50 percent of the total cell content of a glioma.

In these cases, only the tumor cells contain QRPT; healthy astrocytes do not. Hence only the tumor cells are capable of breaking down quinolinic acid into NAD+. "The malignant transformation of astrocytes appears to be linked to their ability to use quinolinic acid as an alternative source of NAD+ and thus develop resistance against radiotherapy and chemotherapy," says Michael Platten. "A link between microglia and the malignancy of gliomas has been known for some time – now we may have found a possible cause. The key enzyme for the alternative NAD+ supply is QRPT. An agent directed against this enzyme might help suppress therapy resistance in brain cancer. This might enable us to achieve better outcomes in treating malignant brain tumors using existing methods."

Felix Sahm, Iris Oezen, Christiane A. Opitz, Bernhard Radlwimme5, Andreas von Deimling, Tilman Ahrendt, Seray Adams, Helge B. Bode, Gilles J. Guillemin, Wolfgang Wick and Michael Platten: The Endogenous Tryptophan Metabolite and NAD+ Precursor Quinolinic Acid Confers Resistance of Gliomas to Oxidative Stress. Cancer Research 2013, DOI: 10.1158/0008-5472.CAN-12-3831

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) with its more than 2,500 employees is the largest biomedical research institute in Germany. At DKFZ, more than 1,000 scientists investigate how cancer develops, identify cancer risk factors and endeavor to find new strategies to prevent people from getting cancer. They develop novel approaches to make tumor diagnosis more precise and treatment of cancer patients more successful. The staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. Jointly with Heidelberg University Hospital, DKFZ has established the National Center for Tumor Diseases (NCT) Heidelberg, where promising approaches from cancer research are translated into the clinic. In the German Consortium for Translational Cancer Research (DKTK), one of six German Centers for Health Research, DKFZ maintains translational centers at seven university partnering sites. Combining excellent university hospitals with high-profile research at a Helmholtz Center is an important contribution to improving the chances of cancer patients. DKFZ is a member of the Helmholtz Association of National Research Centers, with ninety percent of its funding coming from the German Federal Ministry of Education and Research and the remaining ten percent from the State of Baden-Württemberg.

Dr. Sibylle Kohlstädt | EurekAlert!
Further information:
http://www.dkfz.de

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>