Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A circuitous route to therapy resistance

27.06.2013
Gliomas are malignant brain tumors that arise from glial cells called astrocytes, found in the central nervous system.

"In treating malignant gliomas, we currently combine radiotherapy with the anticancer drug temozolomide. However, in some patients, tumors rapidly become resistant to both treatment methods," says neurooncologist Professor Dr. Michael Platten, who leads a cooperation unit of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) and the Department of Neurooncology of Heidelberg University Hospital. "We therefore urgently need new methods of treating these diseases more effectively."

Chemotherapy and radiotherapy damage the DNA of tumor cells. Normally these DNA defects automatically trigger the cellular suicide program known as apoptosis. However, tumor cells possess an efficient DNA repair system that they use to protect themselves from the consequences of therapy, thus evading cell death.

Key repair mechanisms in the cell can only work efficiently if a molecule called NAD+ is present. When DNA repair is running at full throttle, as is the case during radiation therapy, NAD+ supplies are quickly exhausted in a cancer cell, leading to DNA damage that goes unrepaired and ultimately cell death. Cancer researchers are therefore trying to use drugs to deprive cells of NAD+ to prevent resistance to therapies. Substances that inhibit the enzyme which produces NAD+ are already being tested in clinical trials.

However, cells can produce NAD+ in a number of ways. They can synthesize it directly, or use a substance called quinolinic acid, a metabolite of the protein building-block tryptophan, as an alternative source to produce NAD+. Michael Platten and his team had discovered that malignant gliomas contain large amounts of quinolinic acid. "We wanted to know whether gliomas might use this circuitous route in order to produce enough NAD+ and thus escape therapy," says neuropathologist Felix Sahm, first author of the publication.

If direct NAD+ production is blocked, malignant glioma cells, unlike normal astrocytes, increase production of QRPT. This enzyme breaks down quinolinic acid into NAD+. Therapies involving the anticancer drug temozolomide, radiation, or oxidative stress were found to lead to increased levels of QRPT in tumors. The higher the degree of malignancy of the gliomas that were investigated, the more QRPT they contained. Brain tumors that recurred after combined radiotherapy-chemotherapy had a poorer prognosis when the cancer cells produced high levels of quinolinic acid.

The researchers also discovered that the tumor cells are not capable of forming quinolinic acid on their own. Instead, the substance is produced by immune cells called microglia, which migrate in large quantities into gliomas. Microglia cells may constitute up to 50 percent of the total cell content of a glioma.

In these cases, only the tumor cells contain QRPT; healthy astrocytes do not. Hence only the tumor cells are capable of breaking down quinolinic acid into NAD+. "The malignant transformation of astrocytes appears to be linked to their ability to use quinolinic acid as an alternative source of NAD+ and thus develop resistance against radiotherapy and chemotherapy," says Michael Platten. "A link between microglia and the malignancy of gliomas has been known for some time – now we may have found a possible cause. The key enzyme for the alternative NAD+ supply is QRPT. An agent directed against this enzyme might help suppress therapy resistance in brain cancer. This might enable us to achieve better outcomes in treating malignant brain tumors using existing methods."

Felix Sahm, Iris Oezen, Christiane A. Opitz, Bernhard Radlwimme5, Andreas von Deimling, Tilman Ahrendt, Seray Adams, Helge B. Bode, Gilles J. Guillemin, Wolfgang Wick and Michael Platten: The Endogenous Tryptophan Metabolite and NAD+ Precursor Quinolinic Acid Confers Resistance of Gliomas to Oxidative Stress. Cancer Research 2013, DOI: 10.1158/0008-5472.CAN-12-3831

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) with its more than 2,500 employees is the largest biomedical research institute in Germany. At DKFZ, more than 1,000 scientists investigate how cancer develops, identify cancer risk factors and endeavor to find new strategies to prevent people from getting cancer. They develop novel approaches to make tumor diagnosis more precise and treatment of cancer patients more successful. The staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. Jointly with Heidelberg University Hospital, DKFZ has established the National Center for Tumor Diseases (NCT) Heidelberg, where promising approaches from cancer research are translated into the clinic. In the German Consortium for Translational Cancer Research (DKTK), one of six German Centers for Health Research, DKFZ maintains translational centers at seven university partnering sites. Combining excellent university hospitals with high-profile research at a Helmholtz Center is an important contribution to improving the chances of cancer patients. DKFZ is a member of the Helmholtz Association of National Research Centers, with ninety percent of its funding coming from the German Federal Ministry of Education and Research and the remaining ten percent from the State of Baden-Württemberg.

Dr. Sibylle Kohlstädt | EurekAlert!
Further information:
http://www.dkfz.de

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>