Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new candidate pathway for treating visceral obesity

07.05.2012
'Browning' white fat by blocking vitamin A metabolism

Brown seems to be the color of choice when it comes to the types of fat cells in our bodies. Brown fat expends energy, while its counterpart, white fat stores it. The danger in white fat cells, along with the increased risk for diabetes and heart disease it poses, seems especially linked to visceral fat. Visceral fat is the build-up of fat around the organs in the belly.

So in the battle against obesity, brown fat appears to be our friend and white fat our foe.

Now a team of researchers led by Jorge Plutzky, MD, director of The Vascular Disease Prevention Program at Brigham and Women's Hospital (BWH) and Harvard Medical School has discovered a way to turn foe to friend.

By manipulating the metabolic pathways in the body responsible for converting vitamin A—or retinol—into retinoic acid, Plutzky and his colleagues have essentially made white fat take on characteristics of brown fat. Their findings put medical science a step closer in the race to develop novel anti-obesity therapies.

The study will be published online on May 6, 2012 in Nature Medicine.

Retinoids, which are molecules derived from vitamin A metabolism, are responsible for many biological functions. One such function is the control of fat cell development and actions. A key step in retinoid metabolism occurs with help from an enzyme called retinaldehyde dehydrogenase 1, or Aldh1a1. The researchers saw that in humans and mice, Aldh1a1 is abundant in white fat cells, especially in the more dangerous visceral fat (sometimes referred to as abdominal fat or belly fat).

When Aldh1a1 was inhibited in white fat cells, those cells began acting like brown fat cells. One of the defining characteristics of brown fat is its ability to release energy as heat. Mice with either deficiency or inhibition of Aldh1a1 become protected against exposure to cold. The researchers saw this classic indicator of brown fat and its ability to generate heat by oxidizing fat (a chemical reaction involving oxygen) in their research.

Especially exciting for the prospects of targeting Aldh1a1 for therapeutic benefit, the researchers found that knocking down expression of the Aldh1a1 gene by injecting antisense molecules into mice made fat by diet resulted in less visceral fat, less weight gain, lower glucose levels, and protection against cold exposure as compared to control mice.

"Brown fat, and mechanisms that might allow white fat to take on brown fat characteristics, has been receiving increasing attention as a possible way to treat obesity and its complications," said Plutzky. "Although more work is needed, we can add specific aspects of retinoid metabolism to those factors that appear involved in determining white versus brown fat."

According to the Centers for Disease Control and Prevention, one-third of adults in the United States are obese. Current methods to reduce obesity include exercise, dietary therapy, medications and surgery.

This research was supported by the National Institutes of Health grants HL048743, AR054604-03S1, 5P30DK057521-12; Mary K. Iacocca Professorship; National Institute of Diabetes and Digestive and Kidney Diseases; and Austrian Science Fund.

Brigham and Women's Hospital (BWH) is a 793-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare, an integrated health care delivery network. BWH is the home of the Carl J. and Ruth Shapiro Cardiovascular Center, the most advanced center of its kind. BWH is committed to excellence in patient care with expertise in virtually every specialty of medicine and surgery. The BWH medical preeminence dates back to 1832, and today that rich history in clinical care is coupled with its national leadership in quality improvement and patient safety initiatives and its dedication to educating and training the next generation of health care professionals. Through investigation and discovery conducted at its Biomedical Research Institute (BRI), www.brighamandwomens.org/research, BWH is an international leader in basic, clinical and translational research on human diseases, involving more than 900 physician-investigators and renowned biomedical scientists and faculty supported by more than $537 M in funding. BWH is also home to major landmark epidemiologic population studies, including the Nurses' and Physicians' Health Studies and the Women's Health Initiative. For more information about BWH, please visit www.brighamandwomens.org.

Lori J. Shanks | EurekAlert!
Further information:
http://www.brighamandwomens.org

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>