Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can't smell anything? This discovery may give you hope

03.09.2012
Gene therapy in mice restores sense of smell, may also aid research into other diseases caused by cilia defects, U-M researchers say

Scientists have restored the sense of smell in mice through gene therapy for the first time -- a hopeful sign for people who can't smell anything from birth or lose it due to disease.

The achievement in curing congenital anosmia -- the medical term for lifelong inability to detect odors -- may also aid research on other conditions that also stem from problems with the cilia. Those tiny hair-shaped structures on the surfaces of cells throughout the body are involved in many diseases, from the kidneys to the eyes.

The new findings, published online in Nature Medicine, come from a team at the University of Michigan Medical School and their colleagues at several other institutions.

The researchers caution that it will take time for their work to affect human treatment, and that it will be most important for people who have lost their sense of smell due to a genetic disorder, rather than those who lose it due to aging, head trauma, or chronic sinus problems. But their work paves the way for a better understanding of anosmia at the cellular level.

"Using gene therapy in a mouse model of cilia dysfunction, we were able to rescue and restore olfactory function, or sense of smell," says senior author Jeffrey Martens, Ph.D., an associate professor of pharmacology at U-M. "Essentially, we induced the neurons that transmit the sense of smell to regrow the cilia they'd lost."

The mice in the study all had a severe genetic defect that affected a protein called IFT88, causing a lack of cilia throughout their bodies. Such mice are prone to poor feeding and to early death as a result. In humans, the same genetic defect is fatal.

The researchers were able to insert normal IFT88 genes into the cells of the mice by giving them a common cold virus loaded with the normal DNA sequence, and allowing the virus to infect them and insert the DNA into the mouse's own cells. They then monitored cilia growth, feeding habits, and well as signals within and between the nerve cells, called neurons, that are involved in the sense of smell.

Only 14 days after the three-day treatment, the mice had a 60 percent increase in their body weight, an indication they were likely eating more. Cell-level indicators showed that neurons involved in smelling were firing correctly when the mice were exposed to amyl acetate, a strong-smelling chemical also called banana oil.

"At the molecular level, function that had been absent was restored," says Martens.

"By restoring the protein back into the olfactory neurons, we could give the cell the ability to regrow and extend cilia off the dendrite knob, which is what the olfactory neuron needs to detect odorants," says postdoctoral fellow and first author Jeremy McIntyre, Ph.D.

Martens notes that the research has importance for other ciliopathies, or diseases caused by cilia dysfunction. These include such conditions as polycystic kidney disease, retinitis pigmentosa in the eye, and rare inherited disorders such as Alström syndrome, Bardet-Biedl syndrome, primary ciliary dyskinesia and nephronopthisis.

Scientists believe that nearly every cell in the body has the capacity to grow one or more cilia. In the olfactory system, multiple cilia project from olfactory sensory neurons, sensory cells that are found in the olfactory epithelium, tissue high up in the nasal cavity. Receptors that bind odorants are localized on the cilia, which is why a loss of cilia results in a loss in the ability to smell.

Because the new findings show that gene therapy is a viable option for the functional rescue of cilia in established, already differentiated cells, researchers working on those conditions might be able to use gene therapy to attempt to restore cilia function as well.

Meanwhile, Martens and his team will continue to look for other cilia-related genetic causes of anosmia, including those that are not lethal in humans.

"We hope this stimulates the olfactory research community to look at anosmia caused by other factors, such as head trauma and degenerative diseases," he says. "We know a lot about how this system works – now have to look at how to fix it when it malfunctions." And, he notes because the neurons involved in the sense of smell connect to the nose, delivery of gene therapy treatments would not need to involve invasive procedures.

The study was funded by four parts of National Institutes of Health: the National Institute on Deafness and Other Communications Disorders, the National Institute on Diabetes and Digestive and Kidney Diseases, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, and the National Eye Institute.

In addition to Martens and McIntyre, the paper's authors include Ariell Joiner, Corey Williams, Paul Jenkins, Dyke McEwen, Lian Zhang and John Escobado from the Martens lab at U-M; Randall Reed from the Johns Hopkins University; Erica Davis, I-Chun Tsai and Nicholas Katsanis from Duke University; Aniko Sabo, Donna Muzny and Richard Gibbs from the Baylor College of Medcine; Eric Green and James Mullikin from the National Institutes of Health Intramural Sequencing Center; Bradley Yoder from the University of Alabama-Birmingham; Sophie Thomas and Tania Attié-Bitach from the Université Paris Descartes; Katarzyna Szymanska and Colin A Johnson from St. James's University Hospital in Leeds, UK; and Philip Beales from University College London, UK.

Reference: Nature Medicine, Advance Online Publication, DOI 10.1038/nm.2860

Grant numbers: R01DC009606, F32DC011990, R01DC004553, R01DC008295, R01DK75996, R01DK072301, R01DK075972, R01HD042601, and R01EY021872.

For more about the Martens lab at the U-M Medical School, visit http://www-personal.umich.edu/~martensj/Home.html

Kara Gavin | EurekAlert!
Further information:
http://www.umich.edu

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>