Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Do 'light' cigarettes deliver less nicotine to the brain than regular cigarettes?

30.09.2008
For decades now, cigarette makers have marketed so-called light cigarettes — which contain less nicotine than regular smokes — with the implication that they are less harmful to smokers' health. A new UCLA study shows, however, that they deliver nearly as much nicotine to the brain.

Reporting in the current online edition of the International Journal of Neuropsychopharmacology, UCLA psychiatry professor Dr. Arthur L. Brody and colleagues found that low-nicotine cigarettes act similarly to regular cigarettes, occupying a significant percentage of the brain's nicotine receptors.

Light cigarettes have nicotine levels of 0.6 to 1 milligrams, while regular cigarettes contain between 1.2 and 1.4 milligrams.

The researchers also looked at de-nicotinized cigarettes, which contain only a trace amount of nicotine (0.05 milligrams) and are currently being tested as an adjunct to standard smoking-cessation treatments. They found that even that low a nicotine level is enough to occupy a sizeable percentage of receptors.

"The two take-home messages are that very little nicotine is needed to occupy a substantial portion of brain nicotine receptors," Brody said, "and cigarettes with less nicotine than regular cigarettes, such as 'light' cigarettes, still occupy most brain nicotine receptors. Thus, low-nicotine cigarettes function almost the same as regular cigarettes in terms of brain nicotine-receptor occupancy.

"It also showed us that de-nicotinized cigarettes still deliver a considerable amount of nicotine to the brain. Researchers, clinicians and smokers themselves should consider that fact when trying to quit."

In the brain, nicotine binds to specific molecules on nerve cells called nicotinic acetylcholine receptors, or nAChRs. When nerve cells communicate, nerve impulses jump chemically across gaps between cells called synapses by means of neurotransmitters. The neurotransmitters then bind to the receptor sites on nerve cells — in the case acetylcholine resulting in the release of a pleasure-inducing chemical called dopamine. Nicotine mimics acetylcholine, but it lasts longer, releasing more dopamine.

"It can cause specific neurons to communicate and thus increases dopamine for an extended period of time," Brody said. "Most scientists believe that's one key reason why nicotine is so addictive."

In an earlier study, researchers determined that smoking a regular, non-light cigarette resulted in the occupancy of 88 percent of these nicotine receptors. However, that study did not determine whether inhaling nicotine or any of the thousands of other chemical found in cigarette smoke resulted in this receptor occupancy. The central goal of the present study was to determine if factors associated with smoking — other than nicotine — resulted in nAChR occupancy.

The authors reasoned that if nicotine is solely responsible for receptor occupancy, then smoking a de-nicotinized cigarette or a low-nicotine cigarette would result in the occupancy of roughly 23 percent and 78 percent of nicotine receptors, respectively, based on the cigarettes' nicotine content.

"That would still be substantial," Brody said.

Fifteen smokers participated in the study. Each was given positron emission tomography (PET) scans, a brain-imaging technique that uses minute amounts of radiation-emitting substances to tag specific molecules. In this case, the tracer was designed to bind to the nicotine receptors in the brain.

The researchers could then measure what percentage of the tracer was displaced by nicotine when the research subjects smoked. In total, 24 PET scans were taken of participants' brains before and after three different conditions: not smoking, smoking a de-nicotinized cigarette and smoking a low-nicotine cigarette.

The PET data showed that smoking a de-nicotinized cigarette and a low-nicotine cigarette occupied 26 percent and 79 percent of the receptors, respectively, which was very close to what the researchers had originally estimated.

"Given the consistency of findings between our previous study with regular cigarettes and the present study — that showed us that inhaling nicotine during smoking is solely responsible for occupancy of brain nicotine receptors," Brody said.

In addition to Brody, other authors of the study were Mark A. Mandelkern, Matthew R. Costello, Anna L. Abrams, David Scheibal, Judah Farahi, Edythe D. London, Richard E. Olmstead, Jed E. Rose and Alexey G. Mukhin. The researchers report no conflicts of interest. Rose, from the Duke University School of Medicine, has received research support for a study unrelated to the present paper from Vector Tobacco Inc., the manufacturer of Quest cigarettes.

The research was supported by the National Institute on Drug Abuse, the Veterans Administration, the Tobacco-Related Disease Research Program, the National Alliance for Research on Schizophrenia and Depression, and the Office of National Drug Control Policy.

Mark Wheeler | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>