Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Do 'light' cigarettes deliver less nicotine to the brain than regular cigarettes?

30.09.2008
For decades now, cigarette makers have marketed so-called light cigarettes — which contain less nicotine than regular smokes — with the implication that they are less harmful to smokers' health. A new UCLA study shows, however, that they deliver nearly as much nicotine to the brain.

Reporting in the current online edition of the International Journal of Neuropsychopharmacology, UCLA psychiatry professor Dr. Arthur L. Brody and colleagues found that low-nicotine cigarettes act similarly to regular cigarettes, occupying a significant percentage of the brain's nicotine receptors.

Light cigarettes have nicotine levels of 0.6 to 1 milligrams, while regular cigarettes contain between 1.2 and 1.4 milligrams.

The researchers also looked at de-nicotinized cigarettes, which contain only a trace amount of nicotine (0.05 milligrams) and are currently being tested as an adjunct to standard smoking-cessation treatments. They found that even that low a nicotine level is enough to occupy a sizeable percentage of receptors.

"The two take-home messages are that very little nicotine is needed to occupy a substantial portion of brain nicotine receptors," Brody said, "and cigarettes with less nicotine than regular cigarettes, such as 'light' cigarettes, still occupy most brain nicotine receptors. Thus, low-nicotine cigarettes function almost the same as regular cigarettes in terms of brain nicotine-receptor occupancy.

"It also showed us that de-nicotinized cigarettes still deliver a considerable amount of nicotine to the brain. Researchers, clinicians and smokers themselves should consider that fact when trying to quit."

In the brain, nicotine binds to specific molecules on nerve cells called nicotinic acetylcholine receptors, or nAChRs. When nerve cells communicate, nerve impulses jump chemically across gaps between cells called synapses by means of neurotransmitters. The neurotransmitters then bind to the receptor sites on nerve cells — in the case acetylcholine resulting in the release of a pleasure-inducing chemical called dopamine. Nicotine mimics acetylcholine, but it lasts longer, releasing more dopamine.

"It can cause specific neurons to communicate and thus increases dopamine for an extended period of time," Brody said. "Most scientists believe that's one key reason why nicotine is so addictive."

In an earlier study, researchers determined that smoking a regular, non-light cigarette resulted in the occupancy of 88 percent of these nicotine receptors. However, that study did not determine whether inhaling nicotine or any of the thousands of other chemical found in cigarette smoke resulted in this receptor occupancy. The central goal of the present study was to determine if factors associated with smoking — other than nicotine — resulted in nAChR occupancy.

The authors reasoned that if nicotine is solely responsible for receptor occupancy, then smoking a de-nicotinized cigarette or a low-nicotine cigarette would result in the occupancy of roughly 23 percent and 78 percent of nicotine receptors, respectively, based on the cigarettes' nicotine content.

"That would still be substantial," Brody said.

Fifteen smokers participated in the study. Each was given positron emission tomography (PET) scans, a brain-imaging technique that uses minute amounts of radiation-emitting substances to tag specific molecules. In this case, the tracer was designed to bind to the nicotine receptors in the brain.

The researchers could then measure what percentage of the tracer was displaced by nicotine when the research subjects smoked. In total, 24 PET scans were taken of participants' brains before and after three different conditions: not smoking, smoking a de-nicotinized cigarette and smoking a low-nicotine cigarette.

The PET data showed that smoking a de-nicotinized cigarette and a low-nicotine cigarette occupied 26 percent and 79 percent of the receptors, respectively, which was very close to what the researchers had originally estimated.

"Given the consistency of findings between our previous study with regular cigarettes and the present study — that showed us that inhaling nicotine during smoking is solely responsible for occupancy of brain nicotine receptors," Brody said.

In addition to Brody, other authors of the study were Mark A. Mandelkern, Matthew R. Costello, Anna L. Abrams, David Scheibal, Judah Farahi, Edythe D. London, Richard E. Olmstead, Jed E. Rose and Alexey G. Mukhin. The researchers report no conflicts of interest. Rose, from the Duke University School of Medicine, has received research support for a study unrelated to the present paper from Vector Tobacco Inc., the manufacturer of Quest cigarettes.

The research was supported by the National Institute on Drug Abuse, the Veterans Administration, the Tobacco-Related Disease Research Program, the National Alliance for Research on Schizophrenia and Depression, and the Office of National Drug Control Policy.

Mark Wheeler | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>