Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching individual neurons respond to magnetic therapy

30.06.2014

New technique could show transcranial magnetic stimulation (TMS) treating depression and other disorders

Engineers and neuroscientists at Duke University have developed a method to measure the response of an individual neuron to transcranial magnetic stimulation (TMS) of the brain. The advance will help researchers understand the underlying physiological effects of TMS -- a procedure used to treat psychiatric disorders -- and optimize its use as a therapeutic treatment.


The interdisciplinary team that developed the method to record an individual neuron's response during transcranial magnetic stimulation. Clockwise from top left: Michael Platt, director of the Duke Institute for Brain Science, Center for Cognitive Neuroscience; Warren Grill, professor of biomedical engineering, electrical and computer engineering, and neurobiology; Marc Sommer, associate professor of biomedical engineering and neurobiology; and Tobias Egner, assistant professor of psychology and neuroscience.

Credit: Duke University

TMS uses magnetic fields created by electric currents running through a wire coil to induce neural activity in the brain. With the flip of a switch, researchers can cause a hand to move or influence behavior. The technique has long been used in conjunction with other treatments in the hopes of improving treatment for conditions including depression and substance abuse.

While studies have demonstrated the efficacy of TMS, the technique's physiological mechanisms have long been lost in a "black box." Researchers know what goes into the treatment and the results that come out, but do not understand what's happening in between.

Part of the reason for this mystery lies in the difficulty of measuring neural responses during the procedure; the comparatively tiny activity of a single neuron is lost in the tidal wave of current being generated by TMS. But the new study demonstrates a way to remove the proverbial haystack.

The results were published online June 29 in Nature Neuroscience.

"Nobody really knows what TMS is doing inside the brain, and given that lack of information, it has been very hard to interpret the outcomes of studies or to make therapies more effective," said Warren Grill, professor of biomedical engineering, electrical and computer engineering, and neurobiology at Duke. "We set out to try to understand what's happening inside that black box by recording activity from single neurons during the delivery of TMS in a non-human primate. Conceptually, it was a very simple goal. But technically, it turned out to be very challenging."

First, Grill and his colleagues in the Duke Institute for Brain Sciences (DIBS) engineered new hardware that could separate the TMS current from the neural response, which is thousands of times smaller. Once that was achieved, however, they discovered that their recording instrument was doing more than simply recording.

The TMS magnetic field was creating an electric current through the electrode measuring the neuron, raising the possibility that this current, instead of the TMS, was causing the neural response. The team had to characterize this current and make it small enough to ignore.

Finally, the researchers had to account for vibrations caused by the large current passing through the TMS device's small coil of wire -- a design problem in and of itself, because the typical TMS coil is too large for a non-human primate's head. Because the coil is physically connected to the skull, the vibration was jostling the measurement electrode.

The researchers were able to compensate for each artifact, however, and see for the first time into the black box of TMS. They successfully recorded the action potentials of an individual neuron moments after TMS pulses and observed changes in its activity that significantly differed from activity following placebo treatments.

Grill worked with Angel Peterchev, assistant professor in psychiatry and behavioral science, biomedical engineering, and electrical and computer engineering, on the design of the coil. The team also included Michael Platt, director of DIBS and professor of neurobiology, and Mark Sommer, a professor of biomedical engineering.

They demonstrated that the technique could be recreated in different labs. "So, any modern lab working with non-human primates and electrophysiology can use this same approach in their studies," said Grill.

The researchers hope that many others will take their method and use it to reveal the effects TMS has on neurons. Once a basic understanding is gained of how TMS interacts with neurons on an individual scale, its effects could be amplified and the therapeutic benefits of TMS increased.

"Studies with TMS have all been empirical," said Grill. "You could look at the effects and change the coil, frequency, duration or many other variables. Now we can begin to understand the physiological effects of TMS and carefully craft protocols rather than relying on trial and error. I think that is where the real power of this research is going to come from."

###

This research was supported by a Research Incubator Award from the Duke Institute for Brain Sciences and by a grant from the National Institute of Neurological Disorders and Stroke of the National Institutes of Health (grant R21 NS078687).

CITATION: "Optimization Of Transcranial Magnetic Stimulation And Single Neuron Recording Methods For Combined Application In Alert Non-Human Primates." Mueller, J.K., Grigsby, E.M., Prevosto, V., Petraglia III, F.W., Rao, H., Deng, Z., Peterchev, A.V., Sommer, M.A., Egner, T., Platt, M.L., Grill, W.M. Nature Neuroscience, June 29, 2014. DOI:10.1038/nn.3751

Ken Kingery | Eurek Alert!
Further information:
http://www.duke.edu

Further reports about: Brain TMS activity neurons procedure respond technique therapeutic treatments

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>