Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching individual neurons respond to magnetic therapy

30.06.2014

New technique could show transcranial magnetic stimulation (TMS) treating depression and other disorders

Engineers and neuroscientists at Duke University have developed a method to measure the response of an individual neuron to transcranial magnetic stimulation (TMS) of the brain. The advance will help researchers understand the underlying physiological effects of TMS -- a procedure used to treat psychiatric disorders -- and optimize its use as a therapeutic treatment.


The interdisciplinary team that developed the method to record an individual neuron's response during transcranial magnetic stimulation. Clockwise from top left: Michael Platt, director of the Duke Institute for Brain Science, Center for Cognitive Neuroscience; Warren Grill, professor of biomedical engineering, electrical and computer engineering, and neurobiology; Marc Sommer, associate professor of biomedical engineering and neurobiology; and Tobias Egner, assistant professor of psychology and neuroscience.

Credit: Duke University

TMS uses magnetic fields created by electric currents running through a wire coil to induce neural activity in the brain. With the flip of a switch, researchers can cause a hand to move or influence behavior. The technique has long been used in conjunction with other treatments in the hopes of improving treatment for conditions including depression and substance abuse.

While studies have demonstrated the efficacy of TMS, the technique's physiological mechanisms have long been lost in a "black box." Researchers know what goes into the treatment and the results that come out, but do not understand what's happening in between.

Part of the reason for this mystery lies in the difficulty of measuring neural responses during the procedure; the comparatively tiny activity of a single neuron is lost in the tidal wave of current being generated by TMS. But the new study demonstrates a way to remove the proverbial haystack.

The results were published online June 29 in Nature Neuroscience.

"Nobody really knows what TMS is doing inside the brain, and given that lack of information, it has been very hard to interpret the outcomes of studies or to make therapies more effective," said Warren Grill, professor of biomedical engineering, electrical and computer engineering, and neurobiology at Duke. "We set out to try to understand what's happening inside that black box by recording activity from single neurons during the delivery of TMS in a non-human primate. Conceptually, it was a very simple goal. But technically, it turned out to be very challenging."

First, Grill and his colleagues in the Duke Institute for Brain Sciences (DIBS) engineered new hardware that could separate the TMS current from the neural response, which is thousands of times smaller. Once that was achieved, however, they discovered that their recording instrument was doing more than simply recording.

The TMS magnetic field was creating an electric current through the electrode measuring the neuron, raising the possibility that this current, instead of the TMS, was causing the neural response. The team had to characterize this current and make it small enough to ignore.

Finally, the researchers had to account for vibrations caused by the large current passing through the TMS device's small coil of wire -- a design problem in and of itself, because the typical TMS coil is too large for a non-human primate's head. Because the coil is physically connected to the skull, the vibration was jostling the measurement electrode.

The researchers were able to compensate for each artifact, however, and see for the first time into the black box of TMS. They successfully recorded the action potentials of an individual neuron moments after TMS pulses and observed changes in its activity that significantly differed from activity following placebo treatments.

Grill worked with Angel Peterchev, assistant professor in psychiatry and behavioral science, biomedical engineering, and electrical and computer engineering, on the design of the coil. The team also included Michael Platt, director of DIBS and professor of neurobiology, and Mark Sommer, a professor of biomedical engineering.

They demonstrated that the technique could be recreated in different labs. "So, any modern lab working with non-human primates and electrophysiology can use this same approach in their studies," said Grill.

The researchers hope that many others will take their method and use it to reveal the effects TMS has on neurons. Once a basic understanding is gained of how TMS interacts with neurons on an individual scale, its effects could be amplified and the therapeutic benefits of TMS increased.

"Studies with TMS have all been empirical," said Grill. "You could look at the effects and change the coil, frequency, duration or many other variables. Now we can begin to understand the physiological effects of TMS and carefully craft protocols rather than relying on trial and error. I think that is where the real power of this research is going to come from."

###

This research was supported by a Research Incubator Award from the Duke Institute for Brain Sciences and by a grant from the National Institute of Neurological Disorders and Stroke of the National Institutes of Health (grant R21 NS078687).

CITATION: "Optimization Of Transcranial Magnetic Stimulation And Single Neuron Recording Methods For Combined Application In Alert Non-Human Primates." Mueller, J.K., Grigsby, E.M., Prevosto, V., Petraglia III, F.W., Rao, H., Deng, Z., Peterchev, A.V., Sommer, M.A., Egner, T., Platt, M.L., Grill, W.M. Nature Neuroscience, June 29, 2014. DOI:10.1038/nn.3751

Ken Kingery | Eurek Alert!
Further information:
http://www.duke.edu

Further reports about: Brain TMS activity neurons procedure respond technique therapeutic treatments

More articles from Medical Engineering:

nachricht Fraunhofer ITEM takes over and continues development of inhalation technology assets from Takeda
10.02.2016 | Fraunhofer Institute for Toxicology and Experimental Medicine

nachricht Laser-assisted wound closure for oral and maxillofacial surgery
09.02.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed

10.02.2016 | Life Sciences

The most accurate optical single-ion clock worldwide

10.02.2016 | Earth Sciences

Absorbing acoustics with soundless spirals

10.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>