Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual Blood Flow

19.03.2014

A new computer technique can realistically simulate how medicine affects the liver

What happens when chemicals flow through the blood stream into the liver and react with the organ? What if parts of the liver are damaged and medicine cannot be properly metabolized?

A new computer simulation can now answer questions such as these in greater detail. Experts at the Fraunhofer Institute for Medical Image Computing MEVIS in Bremen were primary partners in developing a program to simulate realistic blood streams and metabolic processes. Their results are now being published in the PLOS Computational Biology scientific journal.

The liver performs many tasks in the body. It removes toxic matter from the blood, produces important proteins, and stores vitamins. Each hour, around 90 liters of blood flow through the human liver.

... more about:
»Biology »Flow »blood »diseases »liver »metabolic »technique

To provide a detailed simulation of how blood flows through and reacts with the liver, researchers start with a high-resolution 3D image of the organ. For the publication in PLOS Computational Biology, the experts used an image of a mouse liver produced with a CT scanner.

Based on this image data, they reconstructed the exact structure of the fine branches of the vessel system. The liver was then split into 50,000 small blocks, in contrast to most of today’s pharmacokinetic simulations, which simply treat the liver as a single ‘black box’. “Even a mouse liver is made up of millions of cells,” explains MEVIS researcher Ole Schwen.

“To keep computation time in check, we combine the procedure for the thousands of cells in each block.” To make sure the results are realistic, the experts rely on a large database of medical research that describes the metabolic characteristics of liver cells.

The results of the simulation show that blood flow and metabolic reactions can be tracked in detail on the computer screen. In one instance, a virtual contrast agent is injected. The computer monitor can be used to observe how quickly the contrast agent reaches the various sections of the liver and how it gradually decays.

However, the procedure, developed as part of the Virtual Liver Network with the Department for Experimental Molecular Imaging at the RWTH Aachen University and Bayer Technology Services in Leverkusen, can do even more. Simulation can also be performed to show areas of the liver with steatosis, a widespread illness also known as fatty liver disease.

After the simulation has begun, the steatotic sections of the liver can be observed to absorb lipophilic contrast agents more effectively than healthy tissue. The metabolic reactions of other medications can also be simulated for both healthy livers and those that are diseased or damaged, for instance, by a paracetamol overdose.

“Currently available computer models only consider the liver as a whole,” explains project leader Tobias Preusser. “Our technique is the first to simulate what actually happens inside the organ.” It has the potential to become a useful research tool for the pharmaceutical industry. How does a new medication affect a patient suffering from steatosis or other liver diseases?

Questions such as these can be answered with this new software simulation. Animal testing could be reduced as well. In the future, the technique could also be used in clinical practice. This could allow clinicians to estimate whether a specific liver medication should be applied for a specific patient.

Before this occurs, MEVIS experts are looking to develop their software further. The current publication in the PLOS Computational Biology journal is based on the CT scan of a mouse liver. “In principle, it is also possible to apply the simulation to a human liver” says Ole Schwen. “In addition, we are currently comparing our simulation with the results of experiments in order to determine whether this new technique can produce quantitatively correct results.”

Publication
Schwen LO, Krauss M, Niederalt C, Gremse F, Kiessling F, et al. (2014) Spatio-Temporal Simulation of First Pass Drug Perfusion in the Liver. PLoS Comput Biol 10(3): e1003499.
http://dx.doi.org/10.1371/journal.pcbi.1003499

The Fraunhofer Institute for Medical Image Computing MEVIS
Embedded in a worldwide network of clinical and academic partners, Fraunhofer MEVIS develops real-world software solutions for image-supported early detection, diagnosis, and therapy. Strong focus is placed on cancer as well as diseases of the circulatory system, brain, breast, liver, and lung. The goal is to detect diseases earlier and more reliably, tailor treatments to each individual, and make therapeutic success more measurable. In addition, the institute develops software systems for industrial partners to undertake image-based studies to determine the effectiveness of medicine and contrast agents. To reach its goals, Fraunhofer MEVIS works closely with medical technology and pharmaceutical companies, providing solutions for the entire chain of development from applied research to certified medical products. http://www.mevis.fraunhofer.de/en

The Virtual Liver Network
The Virtual Liver Network is composed of 70 work groups at 41 clinics and research institutes who aim to improve knowledge of liver function. The goal of the interdisciplinary project is to create a computer model that can simulate the liver and its processes as accurately as possible. All relevant scales are researched – from molecules and cells up to the complete liver. The model will be evaluated using laboratory experiments and clinical data. This should allow for well-grounded prognoses and create the basis for the development of new therapy and diagnosis procedures. The BMBF is funding the Virtual Liver Network with 43 million Euro for five years, beginning in April 2010. Fraunhofer MEVIS receives a yearly sum of €380,000.
http://www.virtual-liver.de

Weitere Informationen:

http://www.mevis.fraunhofer.de/en/news/press-release/article/virtueller-blutflus...

Bianka Hofmann | Fraunhofer-Institut

Further reports about: Biology Flow blood diseases liver metabolic technique

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>