Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrasound idea: Prototype NIST/CU bioreactor evaluates engineered tissue while creating it

04.05.2012
Researchers at the National Institute of Standards and Technology (NIST) have developed a prototype bioreactor — a device for culturing cells to create engineered tissues — that both stimulates and evaluates tissue as it grows, mimicking natural processes while eliminating the need to stop periodically to cut up samples for analysis. Tissue created this way might someday be used to replace, for example, damaged or diseased cartilage in the knee and hip.

Conventional methods for evaluating the development and properties of engineered tissue are time-consuming, destructive and need to be repeated many times. By using ultrasound to monitor tissue during processing without destroying it, the novel bioreactor could be a faster and less expensive alternative.

"Most bioreactors don't do any type of nondestructive evaluation," says NIST postdoctoral researcher Jenni Popp, first author of a new paper* about the instrument. "Having some sort of ongoing evaluation of the developing tissue is definitely novel."

Cartilage is smooth connective tissue that supports joint motion. Natural cartilage is created by specialized cells that generate large amounts of structural proteins to weave a tough support material called extracellular matrix. Lacking blood vessels, cartilage has limited capability to heal from arthritis, sports injuries or other defects. Damage can be treated with drugs or joint replacement but results can be imperfect. Engineered tissue is used in some medical treatments but is not yet a routine alternative to metal or plastic joint replacements. The NIST bioreactor gives researchers a noninvasive way to monitor important structural changes in developing tissue.

The NIST/CU bioreactor can fit inside a standard incubator, which controls temperature and acidity in the growth environment. The bioreactor applies force to stimulate five small cubes of cartilage cells embedded in water-based gels. The mechanical force mimics the natural stimuli needed for the cells to create matrix proteins and develop the structure and properties of real cartilage. Ultrasound techniques monitor tissue changes over time, while a digital video microscope takes images.

Preliminary studies indicate the bioreactor both stimulates and monitors development of cells, matrix content and scaffolds to make three-dimensional engineered cartilage. The cell-laden gels were stimulated twice daily for an hour. Sulfated glycosaminoglycan (sGAG)—which combines with fibrous proteins to form the extracellular matrix—increased significantly after seven days. This structural change was detected by a significant decrease in ultrasound signals after seven days.

The research described in the new paper was performed at and led by NIST. The bioreactor is a collaborative project with several co-authors from the University of Colorado Boulder (CU) Department of Chemical and Biological Engineering.

NIST and CU researchers continue to develop ultrasonic measurement methods and plan to conduct longer experiments. The bioreactor is also being used by other academic researchers as a tool for validating mathematical models of biokinetics, the study of growth and movement in developing tissue.

* J.R. Popp, J.J. Roberts, D.V. Gallagher, K.S. Anseth, S.J. Bryant and T.P. Quinn. An instrumented bioreactor for mechanical stimulation and real-time, nondestructive evaluation of engineered cartilage tissue. Journal of Medical Devices, June 2012, Vol. 6, issue 2, 021006, posted online April 26.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Medical Engineering:

nachricht MRI technique differentiates benign breast lesions from malignancies
20.02.2018 | Radiological Society of North America

nachricht True to type: From human biopsy to complex gut physiology on a chip
14.02.2018 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>