Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrasound idea: Prototype NIST/CU bioreactor evaluates engineered tissue while creating it

04.05.2012
Researchers at the National Institute of Standards and Technology (NIST) have developed a prototype bioreactor — a device for culturing cells to create engineered tissues — that both stimulates and evaluates tissue as it grows, mimicking natural processes while eliminating the need to stop periodically to cut up samples for analysis. Tissue created this way might someday be used to replace, for example, damaged or diseased cartilage in the knee and hip.

Conventional methods for evaluating the development and properties of engineered tissue are time-consuming, destructive and need to be repeated many times. By using ultrasound to monitor tissue during processing without destroying it, the novel bioreactor could be a faster and less expensive alternative.

"Most bioreactors don't do any type of nondestructive evaluation," says NIST postdoctoral researcher Jenni Popp, first author of a new paper* about the instrument. "Having some sort of ongoing evaluation of the developing tissue is definitely novel."

Cartilage is smooth connective tissue that supports joint motion. Natural cartilage is created by specialized cells that generate large amounts of structural proteins to weave a tough support material called extracellular matrix. Lacking blood vessels, cartilage has limited capability to heal from arthritis, sports injuries or other defects. Damage can be treated with drugs or joint replacement but results can be imperfect. Engineered tissue is used in some medical treatments but is not yet a routine alternative to metal or plastic joint replacements. The NIST bioreactor gives researchers a noninvasive way to monitor important structural changes in developing tissue.

The NIST/CU bioreactor can fit inside a standard incubator, which controls temperature and acidity in the growth environment. The bioreactor applies force to stimulate five small cubes of cartilage cells embedded in water-based gels. The mechanical force mimics the natural stimuli needed for the cells to create matrix proteins and develop the structure and properties of real cartilage. Ultrasound techniques monitor tissue changes over time, while a digital video microscope takes images.

Preliminary studies indicate the bioreactor both stimulates and monitors development of cells, matrix content and scaffolds to make three-dimensional engineered cartilage. The cell-laden gels were stimulated twice daily for an hour. Sulfated glycosaminoglycan (sGAG)—which combines with fibrous proteins to form the extracellular matrix—increased significantly after seven days. This structural change was detected by a significant decrease in ultrasound signals after seven days.

The research described in the new paper was performed at and led by NIST. The bioreactor is a collaborative project with several co-authors from the University of Colorado Boulder (CU) Department of Chemical and Biological Engineering.

NIST and CU researchers continue to develop ultrasonic measurement methods and plan to conduct longer experiments. The bioreactor is also being used by other academic researchers as a tool for validating mathematical models of biokinetics, the study of growth and movement in developing tissue.

* J.R. Popp, J.J. Roberts, D.V. Gallagher, K.S. Anseth, S.J. Bryant and T.P. Quinn. An instrumented bioreactor for mechanical stimulation and real-time, nondestructive evaluation of engineered cartilage tissue. Journal of Medical Devices, June 2012, Vol. 6, issue 2, 021006, posted online April 26.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Medical Engineering:

nachricht PET identifies which prostate cancer patients can benefit from salvage radiation treatment
05.12.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Designing a golden nanopill
01.12.2017 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>