Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tagging tumors with gold: Scientists use gold nanorods to flag brain tumors

13.10.2011
"It's not brain surgery" is a phrase often uttered to dismiss a job's difficulty, but when the task actually is removing a brain tumor, even the slightest mistake could have serious health consequences.

To help surgeons in such high-pressure situations, researchers from Prof. Adam Wax's team at Duke University's Fitzpatrick Institute for Photonics and Biomedical Engineering Department have proposed a way to harness the unique optical properties of gold nanoparticles to clearly distinguish a brain tumor from the healthy, and vital, tissue that surrounds it. The team will present their findings at the Optical Society's (OSA) Annual Meeting, Frontiers in Optics (FiO) 2011 (http://www.frontiersinoptics.com/), taking place in San Jose, Calif. next week.

Current techniques for outlining brain tumors vary, but all have limitations, such as the inability to perform real-time imaging without big, expensive equipment, or the toxicity and limited lifespan of certain labeling agents. Gold nanoparticles—which are so small that 500 of them end-to-end could fit across a human hair—might provide a better way to flag tumorous tissue, since they are non-toxic and relatively inexpensive to manufacture.

The Duke researchers synthesized gold, rod-shaped nanoparticles with varying length-to-width ratios. The different-sized particles displayed different optical properties, so by controlling the nanorods' growth the team could "tune" the particles to scatter a specific frequency of light. The researchers next joined the tuned particles to antibodies that bind to growth factor receptor proteins found in unusually high concentrations on the outside of cancer cells. When the antibodies latched on to cancer cells, the gold nanoparticles marked their presence.

The team tested the method by bathing slices of tumor-containing mouse brain in a solution of gold nanoparticles merged with antibodies. Shining the tuned frequency of light on the sample revealed bright points where the tumors lurked. The tunability of the gold nanoparticles is important, says team member Kevin Seekell, because it allows researchers to choose from a window of light frequencies that are not readily absorbed by biological tissue. It might also allow researchers to attach differently tuned nanoparticles to different antibodies, providing a way to diagnose different types of tumors based the specific surface proteins the cancer cells display. Future work by the team will also focus on developing a surgical probe that can image gold nanoparticles in a living brain, Seekell says.

FiO presentation FWL4, "Controlled Synthesis of Gold Nanorods and Application to Brain Tumor Delineation," by Kevin Seekell et al. is at 11:45 a.m. on Wednesday, Oct. 19.

EDITOR'S NOTE: High-resolution images are available upon request. Contact Angela Stark, astark@osa.org.

About the Meeting

Frontiers in Optics 2011 is OSA's 95th Annual Meeting and is being held together with Laser Science XXVII, the annual meeting of the American Physical Society (APS) Division of Laser Science (DLS). The two meetings unite the OSA and APS communities for five days of quality, cutting-edge presentations, fascinating invited speakers and a variety of special events spanning a broad range of topics in physics, biology and chemistry. FiO 2011 will also offer a number of Short Courses designed to increase participants' knowledge of a specific subject while offering the experience of insightful teachers. An exhibit floor featuring leading optics companies will further enhance the meeting.

Useful Links:

•Meeting home page (http://www.frontiersinoptics.com/)
•Conference program (http://www.frontiersinoptics.com/Home/Conference-Program.aspx)

•Searchable abstracts (http://fio-ls2011.abstractcentral.com/login)

PRESS REGISTRATION: A Press Room for credentialed press and analysts will be located in the Fairmont San Jose Hotel, Sunday through Thursday, Oct. 16-20. Those interested in obtaining a press badge for FiO should contact OSA's Angela Stark at +1 202.416.1443 or astark@osa.org.

About OSA

Uniting more than 130,000 professionals from 175 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit www.osa.org.

Angela Stark | EurekAlert!
Further information:
http://www.osa.org

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>