Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tablet PC Supports Liver Surgeons

20.08.2013
New app from Fraunhofer MEVIS tested for the first time during an operation in Germany.

Until now, surgeons have had to memorize the precise location of important blood vessels in organs and where tumors could likely be found and need to be removed.

A new app for tablet computers developed by Fraunhofer MEVIS in Bremen could support surgeons in the future and help them reduce the rate of complications during operations. The system has recently been tested for the first time in Germany. On August 15, the surgical team at the Asklepios Klinik Barmbek in Hamburg successfully tested the app during a liver operation.

A liver cancer operation usually lasts many hours because the organ is difficult to operate. It hosts a branching vessel structure through which one and a half liters of blood flow every minute. If a surgeon makes a cut in an inappropriate place, this puts the patient at risk of severe blood loss. In addition, doctors must ensure that the patient retains enough organ volume for survival and that this volume is sufficiently supplied with blood. To accomplish this, doctors need to know as accurately as possible both before and during an operation where blood vessels inside the organ are located.

The new tablet app from the Fraunhofer Institute for Medical Image Computing MEVIS in Bremen promises to deliver this support. It is based on the established MEVIS software for liver operation planning that is employed in clinics worldwide and has been used for more than 6000 patients. Based on 3D x-ray images, the software can reconstruct the locations of blood vessels in the liver for each patient. Before an operation, surgeons can then precisely plan how and where to place the scalpel to most effectively remove a tumor.

However, there are limitations: doctors usually have little opportunity to view the software images during surgery and compare the surgical situation with planning data. Some surgeons even print out images to take into the operating room. “With our app, the entire set of planning data can be shown directly on the operating table” said MEVIS computer scientist Alexander Köhn.

At the intervention in Hamburg, the clinicians used a further feature of the new app. With the integrated camera, the tablet could film the liver during the operation. The app then superimposed the planning data – a branched network showing the vessel system in different colors. “Using this function, we can virtually look into the organ and make the tumor and vessel structures visible” said Prof. Dr. Karl Oldhafer, Chief of the Department of Surgery at the Asklepios Klinik Barmbek in Hamburg. This simplifies comparison to determine whether the intervention has gone according to plan. “With this new technology, we are able to better implement computer-supported operation planning for tumor removal” remarked Oldhafer. “The method has great potential. We imagine using it for operations on other organs, such as the pancreas.”

Alexander Köhn developed the first version of the app with doctors at the Yokohama City University Hospital The app was test there at the end of 2012 for the first time during an operation. “The Japanese surgeons were very impressed by the capabilities of the system” said Köhn. “They hope that the app will help reduce complication rates and shorten hospital stays.” For future interventions, the app offers the following capabilities:

- By simply marking the touchscreen, doctors can measure the length of a vessel to be removed. This helps the doctor estimate whether the remaining ends can be sewn together or whether a new piece of vessel must be inserted.

- After the surgeon removes certain vessels, he can remove them on the app screen with a virtual ‘eraser’. The separated vessels disappear from the screen and let the doctor view underlying structures.

- If, during the operation, a tumor is judged to be larger than at first thought, surgeons must make snap decisions. The MEVIS app can also help here. If additional vessels must be removed, the app calculates which parts of the liver will no longer be sufficiently supplied with blood. This lets the surgeon better estimate whether the remaining organ volume is large enough for the patient to survive.

For many years, Fraunhofer MEVIS has developed procedures to bring image-based planning information into the operating room and make them directly accessible to surgeons. The challenge is that a large amount of data must be efficiently reduced so that the surgeon is always supplied with the most recent and most important information. To allow doctors to request data quickly and selectively, researchers are developing novel interaction strategies. Tablet computers such as the iPad are only one way to implement these ideas. Other MEVIS teams are working to develop navigation systems similar to those found in cars, to project planning data directly on the organ or surgical drapes, and to use gestures to recall desired information.

Bianka Hofmann | Fraunhofer-Institut
Further information:
http://www.mevis.fraunhofer.de

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>