Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tablet PC Supports Liver Surgeons

20.08.2013
New app from Fraunhofer MEVIS tested for the first time during an operation in Germany.

Until now, surgeons have had to memorize the precise location of important blood vessels in organs and where tumors could likely be found and need to be removed.

A new app for tablet computers developed by Fraunhofer MEVIS in Bremen could support surgeons in the future and help them reduce the rate of complications during operations. The system has recently been tested for the first time in Germany. On August 15, the surgical team at the Asklepios Klinik Barmbek in Hamburg successfully tested the app during a liver operation.

A liver cancer operation usually lasts many hours because the organ is difficult to operate. It hosts a branching vessel structure through which one and a half liters of blood flow every minute. If a surgeon makes a cut in an inappropriate place, this puts the patient at risk of severe blood loss. In addition, doctors must ensure that the patient retains enough organ volume for survival and that this volume is sufficiently supplied with blood. To accomplish this, doctors need to know as accurately as possible both before and during an operation where blood vessels inside the organ are located.

The new tablet app from the Fraunhofer Institute for Medical Image Computing MEVIS in Bremen promises to deliver this support. It is based on the established MEVIS software for liver operation planning that is employed in clinics worldwide and has been used for more than 6000 patients. Based on 3D x-ray images, the software can reconstruct the locations of blood vessels in the liver for each patient. Before an operation, surgeons can then precisely plan how and where to place the scalpel to most effectively remove a tumor.

However, there are limitations: doctors usually have little opportunity to view the software images during surgery and compare the surgical situation with planning data. Some surgeons even print out images to take into the operating room. “With our app, the entire set of planning data can be shown directly on the operating table” said MEVIS computer scientist Alexander Köhn.

At the intervention in Hamburg, the clinicians used a further feature of the new app. With the integrated camera, the tablet could film the liver during the operation. The app then superimposed the planning data – a branched network showing the vessel system in different colors. “Using this function, we can virtually look into the organ and make the tumor and vessel structures visible” said Prof. Dr. Karl Oldhafer, Chief of the Department of Surgery at the Asklepios Klinik Barmbek in Hamburg. This simplifies comparison to determine whether the intervention has gone according to plan. “With this new technology, we are able to better implement computer-supported operation planning for tumor removal” remarked Oldhafer. “The method has great potential. We imagine using it for operations on other organs, such as the pancreas.”

Alexander Köhn developed the first version of the app with doctors at the Yokohama City University Hospital The app was test there at the end of 2012 for the first time during an operation. “The Japanese surgeons were very impressed by the capabilities of the system” said Köhn. “They hope that the app will help reduce complication rates and shorten hospital stays.” For future interventions, the app offers the following capabilities:

- By simply marking the touchscreen, doctors can measure the length of a vessel to be removed. This helps the doctor estimate whether the remaining ends can be sewn together or whether a new piece of vessel must be inserted.

- After the surgeon removes certain vessels, he can remove them on the app screen with a virtual ‘eraser’. The separated vessels disappear from the screen and let the doctor view underlying structures.

- If, during the operation, a tumor is judged to be larger than at first thought, surgeons must make snap decisions. The MEVIS app can also help here. If additional vessels must be removed, the app calculates which parts of the liver will no longer be sufficiently supplied with blood. This lets the surgeon better estimate whether the remaining organ volume is large enough for the patient to survive.

For many years, Fraunhofer MEVIS has developed procedures to bring image-based planning information into the operating room and make them directly accessible to surgeons. The challenge is that a large amount of data must be efficiently reduced so that the surgeon is always supplied with the most recent and most important information. To allow doctors to request data quickly and selectively, researchers are developing novel interaction strategies. Tablet computers such as the iPad are only one way to implement these ideas. Other MEVIS teams are working to develop navigation systems similar to those found in cars, to project planning data directly on the organ or surgical drapes, and to use gestures to recall desired information.

Bianka Hofmann | Fraunhofer-Institut
Further information:
http://www.mevis.fraunhofer.de

More articles from Medical Engineering:

nachricht Self-powered paper-based 'SPEDs' may lead to new medical-diagnostic tools
23.08.2017 | Purdue University

nachricht New technique to treating mitral valve diseases: First patient data
22.08.2017 | Universitätsspital Bern

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>