Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tablet PC Supports Liver Surgeons

20.08.2013
New app from Fraunhofer MEVIS tested for the first time during an operation in Germany.

Until now, surgeons have had to memorize the precise location of important blood vessels in organs and where tumors could likely be found and need to be removed.

A new app for tablet computers developed by Fraunhofer MEVIS in Bremen could support surgeons in the future and help them reduce the rate of complications during operations. The system has recently been tested for the first time in Germany. On August 15, the surgical team at the Asklepios Klinik Barmbek in Hamburg successfully tested the app during a liver operation.

A liver cancer operation usually lasts many hours because the organ is difficult to operate. It hosts a branching vessel structure through which one and a half liters of blood flow every minute. If a surgeon makes a cut in an inappropriate place, this puts the patient at risk of severe blood loss. In addition, doctors must ensure that the patient retains enough organ volume for survival and that this volume is sufficiently supplied with blood. To accomplish this, doctors need to know as accurately as possible both before and during an operation where blood vessels inside the organ are located.

The new tablet app from the Fraunhofer Institute for Medical Image Computing MEVIS in Bremen promises to deliver this support. It is based on the established MEVIS software for liver operation planning that is employed in clinics worldwide and has been used for more than 6000 patients. Based on 3D x-ray images, the software can reconstruct the locations of blood vessels in the liver for each patient. Before an operation, surgeons can then precisely plan how and where to place the scalpel to most effectively remove a tumor.

However, there are limitations: doctors usually have little opportunity to view the software images during surgery and compare the surgical situation with planning data. Some surgeons even print out images to take into the operating room. “With our app, the entire set of planning data can be shown directly on the operating table” said MEVIS computer scientist Alexander Köhn.

At the intervention in Hamburg, the clinicians used a further feature of the new app. With the integrated camera, the tablet could film the liver during the operation. The app then superimposed the planning data – a branched network showing the vessel system in different colors. “Using this function, we can virtually look into the organ and make the tumor and vessel structures visible” said Prof. Dr. Karl Oldhafer, Chief of the Department of Surgery at the Asklepios Klinik Barmbek in Hamburg. This simplifies comparison to determine whether the intervention has gone according to plan. “With this new technology, we are able to better implement computer-supported operation planning for tumor removal” remarked Oldhafer. “The method has great potential. We imagine using it for operations on other organs, such as the pancreas.”

Alexander Köhn developed the first version of the app with doctors at the Yokohama City University Hospital The app was test there at the end of 2012 for the first time during an operation. “The Japanese surgeons were very impressed by the capabilities of the system” said Köhn. “They hope that the app will help reduce complication rates and shorten hospital stays.” For future interventions, the app offers the following capabilities:

- By simply marking the touchscreen, doctors can measure the length of a vessel to be removed. This helps the doctor estimate whether the remaining ends can be sewn together or whether a new piece of vessel must be inserted.

- After the surgeon removes certain vessels, he can remove them on the app screen with a virtual ‘eraser’. The separated vessels disappear from the screen and let the doctor view underlying structures.

- If, during the operation, a tumor is judged to be larger than at first thought, surgeons must make snap decisions. The MEVIS app can also help here. If additional vessels must be removed, the app calculates which parts of the liver will no longer be sufficiently supplied with blood. This lets the surgeon better estimate whether the remaining organ volume is large enough for the patient to survive.

For many years, Fraunhofer MEVIS has developed procedures to bring image-based planning information into the operating room and make them directly accessible to surgeons. The challenge is that a large amount of data must be efficiently reduced so that the surgeon is always supplied with the most recent and most important information. To allow doctors to request data quickly and selectively, researchers are developing novel interaction strategies. Tablet computers such as the iPad are only one way to implement these ideas. Other MEVIS teams are working to develop navigation systems similar to those found in cars, to project planning data directly on the organ or surgical drapes, and to use gestures to recall desired information.

Bianka Hofmann | Fraunhofer-Institut
Further information:
http://www.mevis.fraunhofer.de

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>