Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spanish scientists develop echo-location in humans

02.07.2009
A team of researchers from the University of Alcalá de Henares (UAH) has shown scientifically that human beings can develop echolocation, the system of acoustic signals used by dolphins and bats to explore their surroundings.

Producing certain kinds of tongue clicks helps people to identify objects around them without needing to see them, something which would be especially useful for the blind.

"In certain circumstances, we humans could rival bats in our echolocation or biosonar capacity", Juan Antonio Martínez, lead author of the study and a researcher at the Superior Polytechnic School of the UAH, tells SINC. The team led by this scientist has started a series of tests, the first of their kind in the world, to make use of human beings' under-exploited echolocation skills.

In the first study, published in the journal Acta Acustica united with Acustica, the team analyses the physical properties of various sounds, and proposes the most effective of these for use in echolocation. "The almost ideal sound is the 'palate click, a click made by placing the tip of the tongue on the palate, just behind the teeth, and moving it quickly backwards, although it is often done downwards, which is wrong", Martínez explains.

The researcher says that palate clicks "are very similar to the sounds made by dolphins, although on a different scale, as these animals have specially-adapted organs and can produce 200 clicks per second, while we can only produce three or four". By using echolocation, "which is three-dimensional, and makes it possible to 'see' through materials that are opaque to visible radiation" it is possible to measure the distance of an object based on the time that elapses between the emission of a sound wave and an echo being received of this wave as it is reflected from the object.

In order to learn how to emit, receive and interpret sounds, the scientists are developing a method that uses a series of protocols. This first step is for the individual to know how to make and identify his or her own sounds (they are different for each person), and later to know how to use them to distinguish between objects according to their geometrical properties "as is done by ships' sonar".

Some blind people had previously taught themselves how to use echolocation "by trial and error". The best-known cases of these are the Americans Daniel Kish, the only blind person to have been awarded a certificate to act as a guide for other blind people, and Ben Underwood, who was considered to be the world's best "echolocator" until he died at the start of 2009.

However, no special physical skills are required in order to develop this skill. "Two hours per day for a couple of weeks are enough to distinguish whether you have an object in front of you, and within another two weeks you can tell the difference between trees and a pavement", Martínez tells SINC.

The scientist recommends trying with the typical "sh" sound used to make someone be quiet. Moving a pen in front of the mouth can be noticed straightaway. This is a similar phenomenon to that when travelling in a car with the windows down, which makes it possible to "hear" gaps in the verge of the road.

The next level is to learn how to master the "palate clicks". To make sure echoes from the tongue clicks are properly interpreted, the researchers are working with a laser pointer, which shows the part of an object at which the sound should be aimed.

A new way of seeing the world

Martínez has told SINC that his team is now working to help deaf and blind people to use this method in the future, because echoes are not only perceived by their ear, but also through vibrations in the tongue and bones. "For these kinds of people in particular, and for all of us in general, this would be a new way of perceiving the world".

Another of the team's research areas involves establishing the biological limits of human echolocation ability, "and the first results indicate that detailed resolution using this method could even rival that of sight itself". In fact, the researchers started out by being able to tell if there was someone standing in front of them, but now can detect certain internal structures, such as bones, and even "certain objects inside a bag".

The scientists recognise that they are still at the very early stages, but the possibilities that would be opened up with the development of echolocation in humans are enormous. This technique will be very practical not only for the blind, but also for professionals such as firemen (enabling them to find exit points through smoke), and rescue teams, or simply people lost in fog.

A better understanding of the mental mechanisms used in echolocation could also help to design new medical imaging technologies or scanners, which make use of the great penetration capacity of clicks. Martínez stresses that these sounds "are so penetrating that, even in environments as noisy as the metro, one can sense discontinuities in the platform or tunnels".

References:

Juan Antonio Martínez Rojas, Jesús Alpuente Hermosilla, Pablo Luis López Espí y Rocío Sánchez Montero. "Physical Analysis of Several Organic Signals for Human Echolocation: Oral Vacuum Pulses". Acta Acustica united with Acustica 95 (2): 325-330, 2009.

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>