Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Somatom Force now further opens computed tomography to highly sensitive patient groups

14.11.2013
- World premiere of high-end CT at the Medical Faculty Mannheim

- Patients with renal insufficiency benefit from significant reductions in administered contrast medium

- Early detection examinations and functional diagnoses with up to 50 percent lower radiation dose that can help make treatment decisions easier

- Minimized artifacts in cardiac and thoracic examinations

Somatom Force – the new computer tomograph (CT) from Siemens – today had its first public presentation worldwide at the University Medical Centre Mannheim, Germany. In its first few weeks of clinical use at Mannheim's Institute for Clinical Radiology and Nuclear Medicine, the third generation of Dual Source computed tomography (CT scanners each with two radiation tubes and detectors) enabled considerably quicker and more precise diagnoses at reduced doses.


Somatom Force – the new computer tomograph (CT) from Siemens – had its first public presentation worldwide at the University Medical Centre Mannheim, Germany.

This high-end CT offers individualized diagnoses now especially also for challenging patients, e.g. for very young patients or people suffering from renal insufficiency, the seriously ill, and obese patients. "In a general population with a very complex age and disease structure, this new CT scanner can solve the problems presented by every radiological situation for virtually every patient," says Institute Director Professor Stefan Schönberg.

The high-end CT Somatom Force offers individualized diagnoses now especially also for challenging patients, e.g. for very young patients or people suffering from renal insufficiency, the seriously ill, and obese patients. Patients suffering from renal insufficiency will benefit from the significant reduction in contrast medium. Early detection examinations and functional 4D imaging can be conducted using up to 50 percent lower radiation dose. This means that this procedure can now be used on a routine basis and physicians can make quicker and more well-founded decisions as to which tumor therapy to use for the individual in question.

Patients suffering from renal insufficiency will benefit from the significant reduction in contrast medium. Early detection examinations and functional 4D imaging can be conducted using up to 50 percent lower radiation dose. This means that this procedure can now be used on a routine basis and physicians can make quicker and more well-founded decisions as to which tumor therapy to use for the individual in question.

Less contrast medium reduces burden on the kidneys

"Somatom Force negates many aspects of computed tomography that up to now have limited its application. For example, the administration of contrast medium that proves problematic for many patients can be greatly lowered," says Walter Märzendorfer, CEO of Computed Tomography and Radiation Oncology at Siemens Healthcare. Up to 20 percent of patients suffer from renal insufficiency. Contrast medium containing iodine can place extra burden on the kidneys of older patients and those with chronic illnesses in particular. Initial examinations in Mannheim show that the average quantity of contrast medium administered in thoracic examinations can be lowered from between 90 and 110 milliliters (ml) to between 25 and 35 ml. This is made possible by the two Vectron X-ray tubes in Somatom Force, which enable routine examinations at particularly low tube voltages of 70 to 100 kilovolts. As the contrast-to-noise ratio rises, the amount of contrast medium can be lowered accordingly.

Precise diagnoses for individual treatment

Somatom Force can also deliver considerable added value in treatment control. 4D imaging, which shows the function of organs and vessels next to their morphology, is particularly important here because it allows additional information to be gleaned about primary tumors and metastases. A disadvantage of this dynamic perfusion is that – up to now – high dose values of more than 50 millisievert (mSv) in certain cases are required e.g. for liver imaging. This dose can now be more than halved with Somatom Force. In one of the Mannheim cases, just 14.7 mSv was required. Such values enable the procedure to be used routinely, thus enabling quicker and more well-founded decisions to be made about which treatment is most suitable for an individual patient.

In the case of novel but also very expensive anti-angiogenesis therapies, which inhibit the formation of blood vessels in the tumor through the administration of medication, Somatom Force can be used to determine precisely at a much earlier stage whether the treatment is working. If it is not, physicians can move to a more effective treatment more rapidly. This improves the cancer patient's chances of receiving effective treatment as quickly as possible – and thus of surviving. It can also help to ensure that medication costing several thousand euros per month is deployed more efficiently and so to reduce the overall cost of the treatment. Usually, long-term CT monitoring is used to identify the correct time to potentially switch treatments. The significantly reduced cumulated radiation dose with Somatom Force is of enormous advantage here. "This computer tomograph means that medical imaging is no longer restricted to traditional diagnostics," explains Professor Schönberg. "As radiologists, we can now work toward the ultimate goal of all medical intervention: The patient's recovery."

Early cancer detection at up to 50 percent lower dose

The NLST lung cancer screening study conducted in the U.S. has prompted a realignment of priorities in cancer prevention: The study showed that mortality rates can be reduced by 20 percent if early lung cancer detection is performed with low-dose CT rather than conventional chest X-rays. Somatom Force is particularly suitable for such early detection examinations due to its previously unattained low dose values. Up to 50 percent lower than that of previous high-end CTs, this radiation dose can be attributed to the "Turbo Flash Mode" of Somatom Force and the use of two special spectral filters – Selective Photon Shields – which optimize the X-ray spectrum and thus significantly improve the air/soft-tissue contrast. Examinations performed at the University Medical Centre Mannheim show that dose values of 0.1 mSv for a lung scan can be achieved with Somatom Force – even in routine clinical situations. "With Somatom Force, there are almost no more contraindications for computed tomography," says PD Dr. Thomas Henzler, Head of Cardio-Thoracic Imaging at the University Medical Centre Mannheim.

Thorax diagnostics without breath-hold

Another advantage in pulmonary diagnostics is the enlarged field of view (50 centimeters) of the "Turbo Flash Mode" on Somatom Force, which covers the entire organ. This extremely quick scan mode with an acquisition rate of almost 400 millimeters per second allows the entire thorax to be depicted in around one second. If a larger area of the body is to be scanned, thanks to the fastest acquisition rate on the market (737 mm/s) entire thoracic-abdominal examinations can even be performed in just one second. This means that patients may not need to hold their breath. With Somatom Force, even high heart rates do not lead to disruptive motion artifacts in clinical images, a fact indicated by images taken of a female patient with 90 heartbeats per minute and no medicinal measures to lower her heart rate.

Follow us on Twitter: www.twitter.com/siemens_press

The Siemens Healthcare Sector is one of the world's largest suppliers to the healthcare industry and a trendsetter in medical imaging, laboratory diagnostics, medical information technology and hearing aids. Siemens offers its customers products and solutions for the entire range of patient care from a single source – from prevention and early detection to diagnosis, and on to treatment and aftercare. By optimizing clinical workflows for the most common diseases, Siemens also makes healthcare faster, better and more cost-effective. Siemens Healthcare employs some 51,000 employees worldwide and operates around the world. In fiscal year 2013 (to September 30), the Sector posted revenue of 13.6 billion euros and profit of 2.0 billion euros. For further information please visit: http://www.siemens.com/healthcare

The products/features (here mentioned) are not commercially available in all countries. Due to regulatory reasons their future availability cannot be guaranteed. Further details are available from the local Siemens organizations.

The statements by Siemens' customers described herein are based on results that were achieved in the customer's unique setting. Since there is no "typical" hospital and many variables exist (e.g., hospital size, case mix, level of IT adoption) there can be no guarantee that other customers will achieve the same results.

Reference Number: HIM201311007e

Contact
Mr. Ulrich Künzel
Healthcare Sector
Siemens AG
Henkestr. 127
91052 Erlangen
Germany
Tel: +49 (9131) 84-3473
Ulrich.Kuenzel​@siemens.com

Ulrich Künzel | Siemens Healthcare
Further information:
http://www.siemens.com/healthcare
http://www.siemens.com/press/Somatom-Force

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

Researchers identify cause of hereditary skeletal muscle disorder

22.02.2017 | Health and Medicine

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>