Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Somatom Force now further opens computed tomography to highly sensitive patient groups

14.11.2013
- World premiere of high-end CT at the Medical Faculty Mannheim

- Patients with renal insufficiency benefit from significant reductions in administered contrast medium

- Early detection examinations and functional diagnoses with up to 50 percent lower radiation dose that can help make treatment decisions easier

- Minimized artifacts in cardiac and thoracic examinations

Somatom Force – the new computer tomograph (CT) from Siemens – today had its first public presentation worldwide at the University Medical Centre Mannheim, Germany. In its first few weeks of clinical use at Mannheim's Institute for Clinical Radiology and Nuclear Medicine, the third generation of Dual Source computed tomography (CT scanners each with two radiation tubes and detectors) enabled considerably quicker and more precise diagnoses at reduced doses.


Somatom Force – the new computer tomograph (CT) from Siemens – had its first public presentation worldwide at the University Medical Centre Mannheim, Germany.

This high-end CT offers individualized diagnoses now especially also for challenging patients, e.g. for very young patients or people suffering from renal insufficiency, the seriously ill, and obese patients. "In a general population with a very complex age and disease structure, this new CT scanner can solve the problems presented by every radiological situation for virtually every patient," says Institute Director Professor Stefan Schönberg.

The high-end CT Somatom Force offers individualized diagnoses now especially also for challenging patients, e.g. for very young patients or people suffering from renal insufficiency, the seriously ill, and obese patients. Patients suffering from renal insufficiency will benefit from the significant reduction in contrast medium. Early detection examinations and functional 4D imaging can be conducted using up to 50 percent lower radiation dose. This means that this procedure can now be used on a routine basis and physicians can make quicker and more well-founded decisions as to which tumor therapy to use for the individual in question.

Patients suffering from renal insufficiency will benefit from the significant reduction in contrast medium. Early detection examinations and functional 4D imaging can be conducted using up to 50 percent lower radiation dose. This means that this procedure can now be used on a routine basis and physicians can make quicker and more well-founded decisions as to which tumor therapy to use for the individual in question.

Less contrast medium reduces burden on the kidneys

"Somatom Force negates many aspects of computed tomography that up to now have limited its application. For example, the administration of contrast medium that proves problematic for many patients can be greatly lowered," says Walter Märzendorfer, CEO of Computed Tomography and Radiation Oncology at Siemens Healthcare. Up to 20 percent of patients suffer from renal insufficiency. Contrast medium containing iodine can place extra burden on the kidneys of older patients and those with chronic illnesses in particular. Initial examinations in Mannheim show that the average quantity of contrast medium administered in thoracic examinations can be lowered from between 90 and 110 milliliters (ml) to between 25 and 35 ml. This is made possible by the two Vectron X-ray tubes in Somatom Force, which enable routine examinations at particularly low tube voltages of 70 to 100 kilovolts. As the contrast-to-noise ratio rises, the amount of contrast medium can be lowered accordingly.

Precise diagnoses for individual treatment

Somatom Force can also deliver considerable added value in treatment control. 4D imaging, which shows the function of organs and vessels next to their morphology, is particularly important here because it allows additional information to be gleaned about primary tumors and metastases. A disadvantage of this dynamic perfusion is that – up to now – high dose values of more than 50 millisievert (mSv) in certain cases are required e.g. for liver imaging. This dose can now be more than halved with Somatom Force. In one of the Mannheim cases, just 14.7 mSv was required. Such values enable the procedure to be used routinely, thus enabling quicker and more well-founded decisions to be made about which treatment is most suitable for an individual patient.

In the case of novel but also very expensive anti-angiogenesis therapies, which inhibit the formation of blood vessels in the tumor through the administration of medication, Somatom Force can be used to determine precisely at a much earlier stage whether the treatment is working. If it is not, physicians can move to a more effective treatment more rapidly. This improves the cancer patient's chances of receiving effective treatment as quickly as possible – and thus of surviving. It can also help to ensure that medication costing several thousand euros per month is deployed more efficiently and so to reduce the overall cost of the treatment. Usually, long-term CT monitoring is used to identify the correct time to potentially switch treatments. The significantly reduced cumulated radiation dose with Somatom Force is of enormous advantage here. "This computer tomograph means that medical imaging is no longer restricted to traditional diagnostics," explains Professor Schönberg. "As radiologists, we can now work toward the ultimate goal of all medical intervention: The patient's recovery."

Early cancer detection at up to 50 percent lower dose

The NLST lung cancer screening study conducted in the U.S. has prompted a realignment of priorities in cancer prevention: The study showed that mortality rates can be reduced by 20 percent if early lung cancer detection is performed with low-dose CT rather than conventional chest X-rays. Somatom Force is particularly suitable for such early detection examinations due to its previously unattained low dose values. Up to 50 percent lower than that of previous high-end CTs, this radiation dose can be attributed to the "Turbo Flash Mode" of Somatom Force and the use of two special spectral filters – Selective Photon Shields – which optimize the X-ray spectrum and thus significantly improve the air/soft-tissue contrast. Examinations performed at the University Medical Centre Mannheim show that dose values of 0.1 mSv for a lung scan can be achieved with Somatom Force – even in routine clinical situations. "With Somatom Force, there are almost no more contraindications for computed tomography," says PD Dr. Thomas Henzler, Head of Cardio-Thoracic Imaging at the University Medical Centre Mannheim.

Thorax diagnostics without breath-hold

Another advantage in pulmonary diagnostics is the enlarged field of view (50 centimeters) of the "Turbo Flash Mode" on Somatom Force, which covers the entire organ. This extremely quick scan mode with an acquisition rate of almost 400 millimeters per second allows the entire thorax to be depicted in around one second. If a larger area of the body is to be scanned, thanks to the fastest acquisition rate on the market (737 mm/s) entire thoracic-abdominal examinations can even be performed in just one second. This means that patients may not need to hold their breath. With Somatom Force, even high heart rates do not lead to disruptive motion artifacts in clinical images, a fact indicated by images taken of a female patient with 90 heartbeats per minute and no medicinal measures to lower her heart rate.

Follow us on Twitter: www.twitter.com/siemens_press

The Siemens Healthcare Sector is one of the world's largest suppliers to the healthcare industry and a trendsetter in medical imaging, laboratory diagnostics, medical information technology and hearing aids. Siemens offers its customers products and solutions for the entire range of patient care from a single source – from prevention and early detection to diagnosis, and on to treatment and aftercare. By optimizing clinical workflows for the most common diseases, Siemens also makes healthcare faster, better and more cost-effective. Siemens Healthcare employs some 51,000 employees worldwide and operates around the world. In fiscal year 2013 (to September 30), the Sector posted revenue of 13.6 billion euros and profit of 2.0 billion euros. For further information please visit: http://www.siemens.com/healthcare

The products/features (here mentioned) are not commercially available in all countries. Due to regulatory reasons their future availability cannot be guaranteed. Further details are available from the local Siemens organizations.

The statements by Siemens' customers described herein are based on results that were achieved in the customer's unique setting. Since there is no "typical" hospital and many variables exist (e.g., hospital size, case mix, level of IT adoption) there can be no guarantee that other customers will achieve the same results.

Reference Number: HIM201311007e

Contact
Mr. Ulrich Künzel
Healthcare Sector
Siemens AG
Henkestr. 127
91052 Erlangen
Germany
Tel: +49 (9131) 84-3473
Ulrich.Kuenzel​@siemens.com

Ulrich Künzel | Siemens Healthcare
Further information:
http://www.siemens.com/healthcare
http://www.siemens.com/press/Somatom-Force

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>