Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers researchers assess severity of prostate cancers using magnetic resonance imaging

11.08.2010
Developments could reduce biopsies, promote 'watchful waiting' for low-grade cancers

Rutgers researchers are developing methods that can accurately assess the severity of prostate cancer by analyzing magnetic resonance images and spectra of a patient's prostate gland. This may help physicians decide more confidently which patients need aggressive treatment and which are better served by "watchful waiting," and could even postpone or eliminate invasive biopsies in patients with low-grade tumors.

In a presentation next month at the world's premier medical image analysis conference, Rutgers biomedical engineers will report that they achieved over 90% accuracy in distinguishing low-grade from high-grade prostate cancers by running computer analyses of the images and spectra made on 19 patients in an early research study.

"The breakthrough we've had in the last few months is that we see image signatures that distinguish aggressive cancers from less aggressive ones," said Anant Madabhushi, associate professor of biomedical engineering at Rutgers and a member of The Cancer Institute of New Jersey (CINJ).

These studies build on earlier research at Rutgers and elsewhere to identify prostate cancer using powerful, high-resolution magnetic resonance imaging (MRI) technology.

"Now we're getting beyond merely identifying whether a person has cancer or not," he said. "This could lead to better patient management and cost savings."

Biomedical engineering graduate student Pallavi Tiwari will present research results and describe image analysis techniques at the Medical Image Computing and Computer Assisted Intervention (MICCAI) Conference in Bejing, China, on Sept. 22.

Tiwari and Madabhushi worked with John Kurhanewicz, professor of radiology and biomedical imaging at the University of California, San Francisco, to obtain prostate gland images from 19 patients who later had radical prostatectomies. They examined both traditional magnetic resonance (MR) images, which provide two-dimensional pictures of the gland's cellular structure, and MR spectroscopy, which maps concentrations of certain chemicals to locations in the prostate gland. Changes in concentrations of these chemical metabolites – choline, creatine and citrate – indicate the presence of cancer.

The researchers compared the MR images and spectra to digital images of the actual excised glands, which pathologists identified as having high-grade (aggressive) or low-grade (indolent) tumors using the established Gleason Grading System. They used pattern recognition techniques to recognize characteristics of areas in the MR images and spectra that corresponded to the cancerous tissue in the excised samples. This involved using computerized tools to align the MR views with digitized images of tissue slices, and to match the different resolutions of the images and spectra.

The objective is to "teach" the computer system to accurately and consistently recognize image patterns that correspond to various grades of cancerous tissue without having the tissue samples available to manually verify.

Madabhushi notes that the techniques will have to be evaluated on more people before they can be considered for clinical use. However, he is encouraged by the early results.

Each year, there are more than 27,000 deaths from prostate cancer in the United States and 190,000 new cases diagnosed. Most clinical diagnoses today are based on PSA levels in blood, physical examinations and needle biopsies. While one in six men might expect to get prostate cancer in their lifetimes, only one in 34 will die of it. Recent studies, including one at CINJ, suggest that men with low-risk cancers are receiving aggressive treatment. Improved diagnostic methods such as the Rutgers work could help patients with low-risk cancers and their physicians feel more confident with watchful waiting.

Also collaborating with the Rutgers researchers was Mark Rosen, associate professor of radiology at the Hospital of the University of Pennsylvania. Funding was provided by the Wallace H. Coulter Foundation, the National Cancer Institute, CINJ, the U.S. Department of Defense and Bioimagene, Inc.

Carl Blesch | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Medical Engineering:

nachricht Electrode shape improves neurostimulation for small targets
25.04.2018 | Purdue University

nachricht Novel PET imaging agent could help guide therapy for brain diseases
03.04.2018 | Society of Nuclear Medicine and Molecular Imaging

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>