Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers researchers assess severity of prostate cancers using magnetic resonance imaging

11.08.2010
Developments could reduce biopsies, promote 'watchful waiting' for low-grade cancers

Rutgers researchers are developing methods that can accurately assess the severity of prostate cancer by analyzing magnetic resonance images and spectra of a patient's prostate gland. This may help physicians decide more confidently which patients need aggressive treatment and which are better served by "watchful waiting," and could even postpone or eliminate invasive biopsies in patients with low-grade tumors.

In a presentation next month at the world's premier medical image analysis conference, Rutgers biomedical engineers will report that they achieved over 90% accuracy in distinguishing low-grade from high-grade prostate cancers by running computer analyses of the images and spectra made on 19 patients in an early research study.

"The breakthrough we've had in the last few months is that we see image signatures that distinguish aggressive cancers from less aggressive ones," said Anant Madabhushi, associate professor of biomedical engineering at Rutgers and a member of The Cancer Institute of New Jersey (CINJ).

These studies build on earlier research at Rutgers and elsewhere to identify prostate cancer using powerful, high-resolution magnetic resonance imaging (MRI) technology.

"Now we're getting beyond merely identifying whether a person has cancer or not," he said. "This could lead to better patient management and cost savings."

Biomedical engineering graduate student Pallavi Tiwari will present research results and describe image analysis techniques at the Medical Image Computing and Computer Assisted Intervention (MICCAI) Conference in Bejing, China, on Sept. 22.

Tiwari and Madabhushi worked with John Kurhanewicz, professor of radiology and biomedical imaging at the University of California, San Francisco, to obtain prostate gland images from 19 patients who later had radical prostatectomies. They examined both traditional magnetic resonance (MR) images, which provide two-dimensional pictures of the gland's cellular structure, and MR spectroscopy, which maps concentrations of certain chemicals to locations in the prostate gland. Changes in concentrations of these chemical metabolites – choline, creatine and citrate – indicate the presence of cancer.

The researchers compared the MR images and spectra to digital images of the actual excised glands, which pathologists identified as having high-grade (aggressive) or low-grade (indolent) tumors using the established Gleason Grading System. They used pattern recognition techniques to recognize characteristics of areas in the MR images and spectra that corresponded to the cancerous tissue in the excised samples. This involved using computerized tools to align the MR views with digitized images of tissue slices, and to match the different resolutions of the images and spectra.

The objective is to "teach" the computer system to accurately and consistently recognize image patterns that correspond to various grades of cancerous tissue without having the tissue samples available to manually verify.

Madabhushi notes that the techniques will have to be evaluated on more people before they can be considered for clinical use. However, he is encouraged by the early results.

Each year, there are more than 27,000 deaths from prostate cancer in the United States and 190,000 new cases diagnosed. Most clinical diagnoses today are based on PSA levels in blood, physical examinations and needle biopsies. While one in six men might expect to get prostate cancer in their lifetimes, only one in 34 will die of it. Recent studies, including one at CINJ, suggest that men with low-risk cancers are receiving aggressive treatment. Improved diagnostic methods such as the Rutgers work could help patients with low-risk cancers and their physicians feel more confident with watchful waiting.

Also collaborating with the Rutgers researchers was Mark Rosen, associate professor of radiology at the Hospital of the University of Pennsylvania. Funding was provided by the Wallace H. Coulter Foundation, the National Cancer Institute, CINJ, the U.S. Department of Defense and Bioimagene, Inc.

Carl Blesch | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Medical Engineering:

nachricht Virtual Reality in Medicine: New Opportunities for Diagnostics and Surgical Planning
07.12.2016 | Universität Basel

nachricht 3-D printed kidney phantoms aid nuclear medicine dosing calibration
06.12.2016 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>