Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared Emitters for Medical Technology

26.11.2007
Infrared technology has been used for many years in the industrial manufacturing sector. It is relatively recently that this technology has been used in medical technology.

However, for some time, infrared emitters have been used directly used to heat tissue before liposuction and they help to remove wrinkles. Infrared emitters are used indirectly in processing medical goods, such as drying granulates, vulcanising tubes or activating adhesives on plasters.


Infrared emitters from Heraeus Noblelight provide effective and high quality drying. In contrast to hot air, infrared heating has a very high heat transfer capacity, which speeds up heating processes. As a result, either the production throughput can be increased or the oven can be reduced in length. Copyright Heraeus Noblelight 2007

Infrared emitters from Heraeus Noblelight transfer heat without contact and are easy to control. As a result, they can be precisely used in sensitive processes and in clean rooms.

It is already well known that infrared heat dries coatings and heats plastics. And many people still remember the old infrared lamps in bathrooms and in piglet rearing. But applications in medical technology?

Modern infrared emitters offer much more than simply heat. Above all, they transfer energy very precisely and according to the properties of the product and the requirements of the production activity. Modern infrared emitters can be matched exactly to the heating process in terms of wavelength, shape and power and they react to control commands in a matter of seconds. As a result, temperature profiling is possible and difficult process conditions can be precisely adhered to.

A very big advantage of infrared technology is that the energy is transferred by electro-magnetic radiation so that the heat is first generated in the product itself and there is no need for a contact/heat transfer medium such as air or gas. This minimises contamination and facilitates heating applications in clean rooms or under vacuum.

Infrared radiation is already being used directly in the healing of skin complaints, where the skin must be irradiated with radiation of quite precise wavelength. Likewise, creases or skin folds can be removed with specific short wave emitters. Good results are also being achieved in liposuction. Medium wave carbon emitters are used to warm the body fat before it is actually sucked away, providing significantly better results.

Infrared emitters are being used even more increasingly in medical technology in indirect applications. Infrared heat offers contact-free welding of filters and is more cost-effective than ultrasonic welding. Infrared heat also dries coatings or printed lettering on syringes, tubes, bottles or other containers and is used to shrink foil onto tubes. Elastic bandages, gauze, powder and granulates are also efficiently dried and unwanted burrs on injection-moulded plastic materials can be easily melted away and removed.

Another advantage of infrared is that edges, corners and very small areas can be heated in a targeted manner, while the rest of the product or production plant remains comparatively cool. Quartz glass emitters can even be made so that they meet three-dimensional heating requirements.

In contrast to hot air, infrared heat has a very high heat transfer capacity. This speeds up heating processes so that either product through-put can be increased or the oven can be reduced in length.

Heraeus Noblelight offers infrared emitters matched to product and process. More importantly, they also offer customers the opportunity to carry out practical tests on sensitive processes in their own in-house Applications Centre. Tests are carried out by technicians and application specialists and are evaluated, with computer support, with the customer.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology- and market-leaders in the production of specialist light sources. In 2006, Heraeus Noblelight had an annual turnover of 88 Million € and employed 651 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company in the business segments of precious metals, sensors, dental and medical products, quartz glass and specialty lighting sources. With revenues of more than EUR 10 billion and more than 11,000 employees in over 100 companies, Heraeus has stood out for more than 155 years as one of the world’s leading companies involved in precious metals and materials technology.

Further Information:

Readers:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
phone +49 6181/35-8545, fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
phone +49 6181/35-8547, fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com
www.heraeus-noblelight.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com

More articles from Medical Engineering:

nachricht Penn first in world to treat patient with new radiation technology
22.09.2017 | University of Pennsylvania School of Medicine

nachricht Skin patch dissolves 'love handles' in mice
18.09.2017 | Columbia University Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>