Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New imaging technology shown to detect pancreatic inflammation in type 1 diabetes

19.08.2005


Non-invasive imaging may help predict type 1 diabetes and response to treatment in humans: Joslin recruiting for new Imaging in Diabetes Clinical Trial

A key obstacle to early detection of type 1 diabetes - as well as to rapid assessment of the effectiveness of therapeutic intervention - has been the lack of direct, non-invasive technologies to visualize inflammation in the pancreas, an early manifestation of disease. Instead, clinicians have had to await overt symptoms before diagnosing an individual, by which time destruction of the insulin-producing beta cells of the pancreas has already progressed significantly.

Recent proof-of-principle experiments by Joslin Diabetes Center and Massachusetts General Hospital (MGH) researchers, however, offer hope that physicians may one day be able to identify individuals with preclinical type 1 diabetes, and to assess the effectiveness of therapies much earlier than is now possible. Findings of the study will be published in the September issue of the Journal of Clinical Investigation.

Type 1 diabetes is an autoimmune disease in which the body’s immune system mistakenly attacks its own insulin-producing beta cells and eventually kills them. Early in this process, white blood cells called T lymphocytes infiltrate the islets of the pancreas (an inflammatory condition known as insulitis), causing the blood vessels to become leaky. Over time, this infiltration of lymphocytes destroys the beta cells, leading to high blood glucose and full-blown diabetes. Today, the only accurate method for detecting the progression or regression of insulitis is a biopsy of the pancreas, which is almost never performed because it is an invasive and potentially risky procedure.

"The most exciting aspect of this study is that it demonstrates that we can, at least in mice, use a non-invasive imaging method to predict at a very early time whether a drug will stop the progression of diabetes or not. In fact, the drug we used in these proof-of-principle experiments is analogous to one currently being tried in humans with diabetes, and so far showing great promise," said Diane Mathis, Ph.D., who led the study together with Christophe Benoist, M.D., Ph.D., also from Joslin, and Ralph Weissleder, M.D., Ph.D., of MGH.

Drs. Mathis and Benoist head Joslin’s Section on Immunology and Immunogenetics, hold William T. Young Chairs in Diabetes Research at Joslin, and are Professors of Medicine at Harvard Medical School. Other investigators in the study included Stuart Turvey, M.D., Ph.D., formerly of Joslin, who is now at the University of British Columbia and British Columbia Children’s Hospital, both in Vancouver, Canada; Maria Denis, Ph.D., a former Joslin research fellow who now works at the BSRC Alexander Fleming Institute of Immunology in Greece, and Eric Swart and Umar Mahmood, M.D., Ph.D., from MGH.

In this study, the Joslin and MGH researchers used a new imaging technique to reveal the otherwise undetectable inflammation of pancreatic islets in recently diagnosed diabetic mice. As T lymphocytes invade the pancreas, blood vessels swell, become more permeable, and leak fluid – as well as small molecules carried in the fluid – into surrounding tissues. In previous experiments, the researchers demonstrated that this leakage can be detected with the help of magnetic nanoparticles (MNP) and magnetic resonance imaging (MRI). After being injected intravenously, these MNPs, which are minute particles of iron oxide, travel through the blood vessels of the body including the pancreas. If pancreatic vessels have become leaky from inflammation, the magnetic particles spill into nearby tissues, where they are "eaten" by scavenger cells called macrophages. Thus, the MNPs become concentrated at the inflamed site and can be spotted by high-resolution MRI.

In their recent study, the researchers applied the MRI-MNP technique to determine whether they could predict which mice would develop autoimmune diabetes and monitor the effectiveness of immune therapy aimed at reversing diabetes. The goal of this study was to gather data on mouse models that could guide the safe application of the technique in human patients with, or at risk of, type 1 diabetes.

Results of this study suggest that the MRI-MNP imaging technology may be helpful in identifying people at immediate risk of developing autoimmune diabetes, but most of all for early prediction of response to therapy, which might be very useful for reducing the time and cost of clinical trials. "Because the results in mice looked so good, and because our MGH colleagues have already successfully used essentially the same drug on many patients with prostate cancer," said Dr. Benoist, "we have been able to move relatively quickly into clinical trials." Dr. Turvey added: "We hope to know soon whether we can use this drug and imaging technique to monitor pancreas inflammation in humans."

Now Recruiting for Clinical Trial

Joslin investigators are currently recruiting subjects for the Imaging in Diabetes clinical trial. Subjects must be individuals over the age of 17 who have been diagnosed with type 1 diabetes within the last six months or who are at increased risk for developing type 1 diabetes, based on family history and antibody testing. At present, the trial is enrolling only at-risk individuals who have already been risk stratified. Qualified individuals interested in more information about this trial should contact Jason Gaglia at Joslin Diabetes Center at 617-732-2481 or jason.gaglia@joslin.harvard.edu.

Marge Dwyer | EurekAlert!
Further information:
http://www.joslin.harvard.edu

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>