Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery will assist treatment and research into fatal brain disorder

18.06.2008
14th Annual Meeting of the Organization for Human Brain Mapping: June, 15-19, 2008

Research using newly developed Magnetic Resonance Imaging technology could soon allow clinicians to confirm Huntington's disease before symptoms appear in people who have the gene for the fatal brain disease.

An early confirmation of Huntington's disease in people who have tested gene positive for the disease could enable treatment to commence early, even before motor, cognitive and psychiatric symptoms arise.

Using Diffusion Magnetic Resonance Imaging (dMR), researchers from the Howard Florey Institute and Monash University in Melbourne have identified extensive white matter degeneration in patients recently diagnosed with Huntington's disease.

White matter forms the connections between brain regions, allowing one region to communicate with another. A breakdown of these structural connections in the brain could help to explain the complex motor and cognitive problems experienced by Huntington's disease patients in the early stages of the disease.

Scientists have recently shown that this white matter degeneration starts before patients are officially diagnosed however, the extent of white matter degeneration in Huntington's disease was previously unknown.

The early symptoms of Huntington's disease can be easily missed, as they are usually minor problems such as clumsiness, memory loss and loss of cognitive function.

These symptoms gradually become more severe over the years, inevitably leading to death within 15 to 20 years of diagnosis.

Working on this research was Florey PhD student Ms India Bohanna, who said this discovery could also assist in the future testing of new therapeutic strategies to treat the disease.

"Currently, the effectiveness of any new treatment is determined by its ability to reduce symptoms, but we know that changes in the brain occur a long time before symptoms arise," Ms Bohanna said

"Our discovery could allow researchers to test therapies even before symptoms appear.

"Not only does this research tell us more about how the brain degenerates early in Huntington's disease, but it also opens up new avenues in drug research and development.

Co-principal investigator, A/Prof Nellie Georgiou-Karistianis from Monash University explained, "By using diffusion MR to examine white matter degeneration early on, we can now test the ability of new therapeutics that may possibly reverse underlying degeneration in brain connections, which ultimately leads to the development of symptoms.

"Although there isn't yet a cure for Huntington's, researchers at the Florey and Monash, and from around the world are working to develop new treatments to delay the onset and severity of this devastating disease," A/Prof Georgiou-Karistianis said.

Collaborating on this project was the Florey's A/Prof Anthony Hannan, who has shown that mental and physical exercise can delay the onset of Huntington's disease and slow the progression of symptoms in a mouse model of the disease.

This is the first study to look at white matter changes across the whole brain in Huntington's disease, and importantly, to study how the breakdown of connections between brain regions might lead to the widespread deficits found in Huntington's disease patients.

The researchers hope to conduct further dMR studies to examine white matter degeneration in people who have tested gene positive to Huntington's disease but are up to 10 years away from developing symptoms.

Huntington's disease is an inherited disease caused by a mutation in a single gene and is inherited by 50 percent of the offspring of patients. The disease usually appears around middle age but can start in childhood. Huntington's disease affects approximately 7 people per 100,000 of the population in Australia.

Diffusion Magnetic Resonance Imaging is a recently developed brain imaging technique that enables examination of the brain at a microstructural level and the mapping of white matter tracts by tracking the movement of water in the brain.

This research will be presented at the 14th Annual Meeting of the Organisation for Human Brain Mapping, which opened on 15 June in Melbourne. This conference, supported by the Howard Florey Institute, will see the world's neuroimaging experts share their latest research and develop new collaborations.

This research has also been accepted for publication in Brain Research Reviews.

Merrin Rafferty | EurekAlert!
Further information:
http://www.florey.edu.au
http://www.researchaustralia.com.au

More articles from Medical Engineering:

nachricht A Challenging European Research Project to Develop New Tiny Microscopes
28.03.2017 | Technische Universität Braunschweig

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>