Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery will assist treatment and research into fatal brain disorder

14th Annual Meeting of the Organization for Human Brain Mapping: June, 15-19, 2008

Research using newly developed Magnetic Resonance Imaging technology could soon allow clinicians to confirm Huntington's disease before symptoms appear in people who have the gene for the fatal brain disease.

An early confirmation of Huntington's disease in people who have tested gene positive for the disease could enable treatment to commence early, even before motor, cognitive and psychiatric symptoms arise.

Using Diffusion Magnetic Resonance Imaging (dMR), researchers from the Howard Florey Institute and Monash University in Melbourne have identified extensive white matter degeneration in patients recently diagnosed with Huntington's disease.

White matter forms the connections between brain regions, allowing one region to communicate with another. A breakdown of these structural connections in the brain could help to explain the complex motor and cognitive problems experienced by Huntington's disease patients in the early stages of the disease.

Scientists have recently shown that this white matter degeneration starts before patients are officially diagnosed however, the extent of white matter degeneration in Huntington's disease was previously unknown.

The early symptoms of Huntington's disease can be easily missed, as they are usually minor problems such as clumsiness, memory loss and loss of cognitive function.

These symptoms gradually become more severe over the years, inevitably leading to death within 15 to 20 years of diagnosis.

Working on this research was Florey PhD student Ms India Bohanna, who said this discovery could also assist in the future testing of new therapeutic strategies to treat the disease.

"Currently, the effectiveness of any new treatment is determined by its ability to reduce symptoms, but we know that changes in the brain occur a long time before symptoms arise," Ms Bohanna said

"Our discovery could allow researchers to test therapies even before symptoms appear.

"Not only does this research tell us more about how the brain degenerates early in Huntington's disease, but it also opens up new avenues in drug research and development.

Co-principal investigator, A/Prof Nellie Georgiou-Karistianis from Monash University explained, "By using diffusion MR to examine white matter degeneration early on, we can now test the ability of new therapeutics that may possibly reverse underlying degeneration in brain connections, which ultimately leads to the development of symptoms.

"Although there isn't yet a cure for Huntington's, researchers at the Florey and Monash, and from around the world are working to develop new treatments to delay the onset and severity of this devastating disease," A/Prof Georgiou-Karistianis said.

Collaborating on this project was the Florey's A/Prof Anthony Hannan, who has shown that mental and physical exercise can delay the onset of Huntington's disease and slow the progression of symptoms in a mouse model of the disease.

This is the first study to look at white matter changes across the whole brain in Huntington's disease, and importantly, to study how the breakdown of connections between brain regions might lead to the widespread deficits found in Huntington's disease patients.

The researchers hope to conduct further dMR studies to examine white matter degeneration in people who have tested gene positive to Huntington's disease but are up to 10 years away from developing symptoms.

Huntington's disease is an inherited disease caused by a mutation in a single gene and is inherited by 50 percent of the offspring of patients. The disease usually appears around middle age but can start in childhood. Huntington's disease affects approximately 7 people per 100,000 of the population in Australia.

Diffusion Magnetic Resonance Imaging is a recently developed brain imaging technique that enables examination of the brain at a microstructural level and the mapping of white matter tracts by tracking the movement of water in the brain.

This research will be presented at the 14th Annual Meeting of the Organisation for Human Brain Mapping, which opened on 15 June in Melbourne. This conference, supported by the Howard Florey Institute, will see the world's neuroimaging experts share their latest research and develop new collaborations.

This research has also been accepted for publication in Brain Research Reviews.

Merrin Rafferty | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Münster researchers make a fly’s heartbeat visible / Software automatically recognizes pulse
12.03.2018 | Westfälische Wilhelms-Universität Münster

nachricht 3-D-written model to provide better understanding of cancer spread
05.03.2018 | Purdue University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>