Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comprehensive diagnosis of heart disease with a single CT scan

06.03.2008
Medical University of South Carolina team reports initial findings

In the current issue of the journal Circulation, a research team from the Medical University of South Carolina’s (MUSC) Heart & Vascular Center report their initial experience with a novel imaging technique that enables comprehensive diagnosis of heart disease based on a single computerized tomographic (CT) scan.

The team, led by Balazs Ruzsics, MD, PhD; Eric Powers, MD, medical director of MUSC Heart and Vascular Center; and U. Joseph Schoepf, MD, director of CT Research and Development, explored how CT scans can now detect blocked arteries and narrowing of the blood vessels in the heart in addition to poor blood flow in the heart muscle.

The single-scan technique would also provide considerable cost savings, as well as greater convenience and reduced radiation exposure for patients. For their approach, the MUSC physicians used a Dual-Source CT scanner. The MUSC scanner was the first unit worldwide that was enabled to acquire images of the heart with the “dual-energy” technique. While the CT scan “dissects” the heart into thin layers, enabling doctors to detect diseased vessels and valves, it could not detect blood flow. The MUSC researchers added two x-ray spectrums, each emitting varying degrees of energy like a series of x-rays, to gain a static image of the coronary arteries and the heart muscle. This dual-energy technique of the CT scan enables mapping the blood distribution within the heart muscle and pinpointing areas with decreased blood supply.

All this is accomplished with a single CT scan within one short breath-hold of approximately 15 seconds or less. In addition to diagnosing the heart, the CT scan also permits doctors to check for other diseases that may be lurking in the lungs or chest wall.

MUSC physicians have long championed the use of CT scans of the heart to detect blockages or narrowing of heart vessels as harbingers of a heart attack without the need for an invasive heart catheterization.

However, for a comprehensive diagnosis of coronary artery disease, MUSC, like most cardiovascular centers, had traditionally relied on several imaging modalities, such as cardiac catheterization, nuclear medicine or magnetic resonance (MR) scanners.

“This technique could be the long coveted “one-stop-shop” test that allows us to look at the heart vessels, heart function and heart blood flow with a single CT scan and within a single breath-hold” said Dr. Schoepf, the lead investigator of the study.

Based on their initial observations, Heart & Vascular Center physicians have launched an intensive research project aimed at systemically comparing the new scanning technique to conventional methods for detecting decreased blood supply in the heart muscle.

Their research has been significantly enhanced by the recent move to a new, state-of-the-art facility, MUSC Ashley River Tower, which provides MUSC physicians with the most cutting edge cardiovascular imaging equipment, all in one convenient, patient-friendly location.

About MUSC

Founded in 1824 in Charleston, the Medical University of South Carolina is the one of the oldest medical schools in the United States. Today, MUSC continues the tradition of excellence in education, research and patient care. MUSC is home to more than 3,000 students and residents, as well as more than 10,000 employees, including 1,300 faculty members. As the largest non-federal employer in Charleston, the University and its affiliates have collective budgets in excess of $1.5 billion per year. MUSC operates a 600 bed medical center, which includes a nationally recognized Children’s Hospital and a leading Institute of Psychiatry.

Kathleen Ellis | EurekAlert!
Further information:
http://www.musc.edu
http://www.muschealth.com

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>