Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comprehensive diagnosis of heart disease with a single CT scan

06.03.2008
Medical University of South Carolina team reports initial findings

In the current issue of the journal Circulation, a research team from the Medical University of South Carolina’s (MUSC) Heart & Vascular Center report their initial experience with a novel imaging technique that enables comprehensive diagnosis of heart disease based on a single computerized tomographic (CT) scan.

The team, led by Balazs Ruzsics, MD, PhD; Eric Powers, MD, medical director of MUSC Heart and Vascular Center; and U. Joseph Schoepf, MD, director of CT Research and Development, explored how CT scans can now detect blocked arteries and narrowing of the blood vessels in the heart in addition to poor blood flow in the heart muscle.

The single-scan technique would also provide considerable cost savings, as well as greater convenience and reduced radiation exposure for patients. For their approach, the MUSC physicians used a Dual-Source CT scanner. The MUSC scanner was the first unit worldwide that was enabled to acquire images of the heart with the “dual-energy” technique. While the CT scan “dissects” the heart into thin layers, enabling doctors to detect diseased vessels and valves, it could not detect blood flow. The MUSC researchers added two x-ray spectrums, each emitting varying degrees of energy like a series of x-rays, to gain a static image of the coronary arteries and the heart muscle. This dual-energy technique of the CT scan enables mapping the blood distribution within the heart muscle and pinpointing areas with decreased blood supply.

All this is accomplished with a single CT scan within one short breath-hold of approximately 15 seconds or less. In addition to diagnosing the heart, the CT scan also permits doctors to check for other diseases that may be lurking in the lungs or chest wall.

MUSC physicians have long championed the use of CT scans of the heart to detect blockages or narrowing of heart vessels as harbingers of a heart attack without the need for an invasive heart catheterization.

However, for a comprehensive diagnosis of coronary artery disease, MUSC, like most cardiovascular centers, had traditionally relied on several imaging modalities, such as cardiac catheterization, nuclear medicine or magnetic resonance (MR) scanners.

“This technique could be the long coveted “one-stop-shop” test that allows us to look at the heart vessels, heart function and heart blood flow with a single CT scan and within a single breath-hold” said Dr. Schoepf, the lead investigator of the study.

Based on their initial observations, Heart & Vascular Center physicians have launched an intensive research project aimed at systemically comparing the new scanning technique to conventional methods for detecting decreased blood supply in the heart muscle.

Their research has been significantly enhanced by the recent move to a new, state-of-the-art facility, MUSC Ashley River Tower, which provides MUSC physicians with the most cutting edge cardiovascular imaging equipment, all in one convenient, patient-friendly location.

About MUSC

Founded in 1824 in Charleston, the Medical University of South Carolina is the one of the oldest medical schools in the United States. Today, MUSC continues the tradition of excellence in education, research and patient care. MUSC is home to more than 3,000 students and residents, as well as more than 10,000 employees, including 1,300 faculty members. As the largest non-federal employer in Charleston, the University and its affiliates have collective budgets in excess of $1.5 billion per year. MUSC operates a 600 bed medical center, which includes a nationally recognized Children’s Hospital and a leading Institute of Psychiatry.

Kathleen Ellis | EurekAlert!
Further information:
http://www.musc.edu
http://www.muschealth.com

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>