Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Z-shaped incision enhances minimally invasive surgery

19.12.2007
A novel surgical technique allowing doctors to operate on patients by making a Z-shaped incision inside the stomach could potentially replace certain types of conventional surgery in humans, according to Penn State medical researchers who have successfully demonstrated the procedure in pigs.

If the technique ultimately proves successful in human trials, researchers say it could circumvent the long painful recovery times and medical complications associated with surgery.

The new approach, known as NOTES (natural orifice transluminal endoscopic surgery), involves using a natural opening in the body, in this case the mouth, to advance a flexible video endoscope into the stomach.

Using this tube, and the instruments contained within it, doctors currently make a small straight incision in the stomach to gain access to the abdominal cavity and the organs requiring attention.

"Theoretically, by eliminating body wall wounds with their associated complications and allowing some procedures to be done without general anesthesia, this method could leave a truly minimal surgical footprint, and may even allow certain procedures to be done outside a traditional operating room," said Matthew Moyer, M.D., a gastroenterology fellow at Penn State Milton S. Hershey Medical Center.

But he cautioned that NOTES is still in the developmental phases and even a simple procedure may be fraught with potential complications at this point.

"One of those barriers is the closure of the access site," said Moyer. "In other words, the opening made in the stomach must be reliably and safely sealed off at the end of the procedure."

Moyer and his Hershey Medical Center colleagues Eric M. Pauli, M.D.,resident surgeon; Randy S. Haluck, M.D., director of minimally invasive surgery and assistant professor, and Abraham Mathew, M.D., director of endoscopy and assistant professor, all at Penn State College of Medicine, believe their technique elegantly solves the problem.

The key to their approach lies in the way the flexible probe exits the stomach. Instead of cutting straight through the stomach wall the researchers guide the endoscope so that it first tunnels under the mucous membrane of the stomach wall for a while before exiting near an organ to be operated on. The endoscope essentially charts a Z-shaped path.

This new technique, known as STAT (self-approximating transluminal access technique), has two main advantages according to Moyer. There is significantly less bleeding involved and the Z-shaped tract effectively seals itself due to pressure created on the abdominal wall by normal breathing.

The team published its findings in a recent issue of Gastrointestinal Endoscopy.

The technique has other advantages as well. "Most people operate straight through the gastric wall and then use a bunch of complex maneuvers to get the endoscope where it needs to be," said Pauli. "And it can get difficult to operate because the endoscope is upside down and in a reverse position."

By tunneling through instead, he points out, doctors can maintain a directional sense and guide the endoscope more accurately.

"There are landmarks in the mucous membrane such as specific blood vessels and groupings of blood vessels. We can also see through the wall of the stomach in some areas to guide the endoscope to the organ we want to operate on," Pauli said.

The researchers have so far operated on 17 animals and only one of them has developed a minor complication.

Once they have perfected their tunneling technique, Moyer and colleagues will try to figure out how exactly to remove surgical specimens from an operation.

"The gall bladder, small tumors, even the ovaries are potentially removable through this technique," said Mathew. "We could in theory make the tunnel as big as we want, and take something out into the stomach and cut it into small pieces before extracting it."

If successful, the procedure in humans could translate into significantly shorter recovery times, little or no pain, less anesthesia and without surgical scars. But the researchers acknowledge it may be a while before their surgical technique reaches human trials.

Mathew said he and his colleagues are confident that their technique lets them get the endoscope out of the stomach and back in safely with currently available instruments. "We have to perfect the technique so we can fully understand the risks," he added.

The Penn State researcher envisions minimally invasive surgery being employed to help patients who are critically ill and may not be able to tolerate a traditional surgery or leave the ICU. In such cases, doctors could access the internal organs and perform procedures such as a biopsy to make a better diagnosis or even perform intestinal bypass surgery.

According to Pauli, these findings could accelerate the pace of research in minimally invasive surgery and ease the way for other breakthroughs.

"We are looking at some fundamental questions: can we get the endoscope in safely, can we get it out safely, and can we get it at the organ we want to operate on. Those are the questions nobody has really answered," he said.

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu
http://www.hmc.psu.edu/gi/

More articles from Medical Engineering:

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

nachricht Pharmacoscpy: Next-Generation Microscopy
25.04.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>