Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Team Makes Cancer Glow to Improve Surgical Outcomes

30.07.2014

The best way to cure most cases of cancer is to surgically remove the tumor. The Achilles heel of this approach, however, is that the surgeon may fail to extract the entire tumor, leading to a local recurrence.

With a new technique, researchers at the University of Pennsylvania have established a new strategy to help surgeons see the entire tumor in the patient, increasing the likelihood of a positive outcome. This approach relies on an injectable dye that accumulates in cancerous tissues much more so than normal tissues. When the surgeon shines an infrared light on the cancer, it glows, allowing the surgeon to remove the entire malignancy.


Viewed under infrared light, a dog's lung tumor glows green.

“Surgeons have had two things that tell where a cancer is during surgery: their eyes and their hands,” said David Holt, first author on the study and professor of surgery in Penn’s School of Veterinary Medicine. “This technique is offering surgeons another tool, to light tumors up during surgery.”

Holt collaborated with a team from Penn’s Perelman School of Medicine led by Sunil Singhal, an assistant professor of surgery. Their paper appears in the journal PLOS ONE.

... more about:
»Cancer »ICG »Medicine »NIR »lung »procedure »surgery »tumors

Between 20 and 50 percent of cancer patients who undergo surgery end up experiencing a local recurrence of their cancer, indicating that the surgeon failed to extract all of the diseased tissue from the site. Identifying the margins of a tumor can be difficult to do during a procedure, and typically surgeons have had to do this by simply looking at the tumor and feeling for differences with their fingers.

Seeking an alternative, Holt, Singhal and colleagues turned to near-infrared, or NIR, imaging. They chose to test the only Food and Drug Administration-approved contrast agent for NIR, a dye called indocyanine green, or ICG, that fluoresces a bright green under NIR light. ICG concentrates in tumor tissue more than normal tissue because the blood vessels of tumors have so-called “leaky” walls from growing quickly.

“Since 1958 when ICG was initially FDA approved, it has been used to examine tissue perfusion and clearance studies,” Singhal said. “However, our group has been experimenting with new strategies to use ICG to solve a classic problem in surgical oncology: preventing local recurrences. Our work uses an old dye in a new way.”

To see if visualizing ICG under NIR could help them define cancerous from non-cancerous tissues, the Penn-led team first tested the approach in mice. They administered ICG to mice with a type of lung cancer and found that they could use NIR to distinguish tumors from normal lung tissue as early as 15 days after the mice acquired cancer. These tumors were visible to the human eye by 24 days.

Next the researchers evaluated the technique in eight client-owned dogs, of various breeds and sizes, that had naturally occurring lung cancer and were brought to Penn Vet's Ryan Veterinary Hospital for surgery. They received ICG intravenously a day before surgery, then surgeons used NIR during the procedure to try to visualize the tumor and distinguish it from normal tissue.

“It worked,” Holt said, the tumors fluorescing clearly enough to permit the surgeon to rapidly distinguish the cancer during surgery. “And because it worked in a spontaneous large animal model, we were able to get approval to start trying it in people." 

A human clinical trial was the final step. Five patients with cancer in their lungs or chest participated in the pilot study at the Hospital of the University of Pennsylvania. Each received an injection of ICG prior to surgery. During the procedure, surgeons removed the tumors, which were then inspected using NIR imaging and biopsied.

All of the tumors strongly fluoresced under the NIR light, confirming that the technique worked in human cancers.

In four of the patients, the surgeon could easily tell tumor from non-tumor by sight and by feel. In a fifth patient, however, though a CT and PET scan indicated that the tumor was a solitary mass, NIR imaging revealed glowing areas in what were thought to be healthy parts of the lung.

“It turns out he had diffuse microscopic cancer in multiple areas of the lung,” Holt said. “We might have otherwise called this Stage I, local disease, and the cancer would have progressed. But because of the imaging and subsequent biospy, he underwent chemotherapy and survived.”

Some other research teams have begun investigating NIR for other applications in cancer surgery, but this is the first time a group has taken the approach from a mouse model to a large animal model of spontaneous disease and all the way to human clinical trials.

One drawback of the technique is that ICG also absorbs into inflamed tissue. So in some patients that had inflamed tissues around their tumors, it was difficult or impossible to tell apart cancer from from inflamed tissue. The Penn researchers are working to identify an alternative targeted contrast agent that is specific to a tumor cell marker to avoid this problem, Holt said.

In addition to Holt and Singhal, the authors on the paper included Penn Medicine’s Olugbenga Okusanya, Ryan Judy, Ollin Venegas, Jack Jiang, Elizabeth DeJesus, Evgeniy Eruslanov, Jon Quatromoni, Pratik Bhojnagarwala, Charuhas Deshpande and Steven Albelda and Emory University’s Shuming Nie.

The work was supported by the American Surgical Association and the National Institutes of Health.

Katherine Unger Baillie | Eurek Alert!

Further reports about: Cancer ICG Medicine NIR lung procedure surgery tumors

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>