Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optimally Polarized

24.09.2014

Foundations of continuous hyperpolarization explained – new method could pave the way for mobile MRI devices

An international research team led by Dr. Jan-Bernd Hövener from the Medical Physics Section of the Department of Radiology at the Medical Center – University of Freiburg has developed a new, cost-efficient method for magnetic resonance imaging (MRI).

Now the scientists have elucidated the underlying mechanism of the new method in the renowned journal CHEMPHYSCHEM. As a comparison of theoretical simulations with experimental results demonstrates, the basic mechanism is now explained. The method could enable high-resolution MRI images even without expensive high-powered magnets.

The thorough investigation of all relevant factors is an important step toward understanding the new effect, which could lead to the development of new MRI devices for conducting cost-effective chemical analyses as well as precise diagnoses in remote areas – reason enough for CHEMPHYSCHEM to print the study on the inside cover.

Magnetic resonance imaging is a technique that can be used to create cross-sectional images of soft tissue structures inside the body without harmful radiation. MRI devices align a part of the magnetic moments of the hydrogen atoms in the body tissue in an artificial magnetic field and stimulate them with radio-frequency waves, whereupon they return to their original state.

Different signals are sent out depending on the structure and water content of the tissue, forming the basis for calculating the image. The technique usually requires very expensive magnets in order to achieve a sufficiently strong signal. The newly developed continuous hyperpolarization method enables MRI devices to align a much larger part of the hydrogen atoms in lower magnetic fields.

Even in a very weak magnetic field created with a simple battery, the signal is one hundred times stronger than in conventional MRI devices currently in use at hospitals. In addition, thanks to parahydrogen the polarization effect remains available for as long as needed: Normal hydrogen gas, whose atomic nuclei are in a special quantum state, causes the polarization to renew itself after each measurement by means of a chemical exchange reaction, thus enabling multiple images.

In their current study, the Freiburg researchers are searching for the factors responsible for influencing this effect of continuous hyperpolarization: “We’re looking for the optimal conditions for this method. The comparison between theoretical simulation and experimental results shows that the retention time (temperature) and concentration of the parahydrogen play a role as well as the strength of the magnetic field,” says Hövener, who conducts his research at the Medical Physics Section of the Department of Radiology at the Medical Center – University of Freiburg. “It was important to understand
this new effect before speculating about biomedical applications. Fortunately, this is now the case.”

Hövener’s research has attracted great interest: His publication last year in Nature Communications won him second place in the competition for the Klee Foundation Prize of the German Society for Biomedical Engineering (DGBMT), which will be awarded in October at DGBMT’s annual meeting in Hanover.

The German Research Foundation (DFG) is providing the Freiburg medical physicist funding to establish his own research group within the context of the Emmy Noether Program. Hövener has set a clear research goal for the group: “We want to develop new hyperpolarization methods and thus take on the challenges of modern diagnostics. Ultimately, our goal is to develop new methods for identifying and observing diseases earlier, more affordably, and better.”

Title of original publication: Continuous Re-hyperpolarization of Nuclear Spins Using
Parahydrogen: Theory and Experiment
doi: 10.1002/cphc.201402177
http://onlinelibrary.wiley.com/doi/10.1002/cphc.201402177/abstract

Contact:
Dr. Jan-Bernd Hövener
Hyperpolarization Group Leader
Medical Physics, Department of Radiology
Medical Center – University of Freiburg
Phone: +49 (0)761 270-93910
jan.hoevener@uniklinik-freiburg.de
www.hyperpolarisation.net
Twitter: @hyperpolarise

Inga Schneider | idw - Informationsdienst Wissenschaft
Further information:
http://www.uniklinik-freiburg.de

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>