Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cardiac catheter combines light and ultrasound to measure plaques

04.10.2017

To win the battle against heart disease, cardiologists need better ways to identify the composition of plaque most likely to rupture and cause a heart attack. Angiography allows them to examine blood vessels for constricted regions by injecting them with a contrast agent before X-raying them. But because plaque does not always result in constricted vessels, angiography can miss dangerous buildups of plaque. Intravascular ultrasound can penetrate the buildup to identify depth, but lacks the ability to identify some of the finer details about risk of plaque rupture.

Professor Laura Marcu's lab in the Department of Biomedical Engineering at UC Davis has now combined intravascular ultrasound with fluorescence lifetime imaging (FLIm) in a single catheter probe that can image the tiny arteries of a living heart.


Biomedical engineers at UC Davis have combined intravascular ultrasound with fluorescence lifetime imaging in a single catheter probe that can image the tiny arteries of a living heart. The new catheter can simultaneously retrieve structural and biochemical information about arterial plaque that could more reliably predict heart attacks.

Credit: Marcu Lab/UC Davis

The new catheter can simultaneously retrieve structural and biochemical information about arterial plaque that could more reliably predict heart attacks.

The new device is described in a recent paper published in Scientific Reports.

An optical fiber in the catheter sends short laser pulses into surrounding tissue, which fluoresces with tiny flashes of light in return. Different kinds of tissue (collagen, proteins, lipids) emit different amounts of fluorescence.

At the same time, an ultrasound probe in the catheter records structural information about the blood vessel.

Seeking FDA Approval for Human Trials

The combination FLIm-IVUS imaging catheter provides a comprehensive insight into how atherosclerotic plaque forms, aiding diagnosis and providing a way to measure how plaques shrink in response to therapy.

The new catheter has been tested in living swine hearts and samples of human coronary arteries.

The catheter used in the study is flexible enough to access coronary arteries in a living human following standard procedures. It does not require any injected fluorescent tracers or any special modification of the catheterization procedures.

The new technique could not only can improve understanding of mechanisms behind plaque rupture - an event with fatal consequences- but also the diagnosis and treatment of patients with heart disease.

Marcu's group is currently working to obtain FDA approval to test this new intravascular technology on human patients.

Andy Fell | EurekAlert!

More articles from Medical Engineering:

nachricht Bio stents increase risk of heart attack
02.11.2017 | Universitätsspital Bern

nachricht World´s smallest jet engine invented in Stuttgart
25.10.2017 | Max-Planck-Institut für Intelligente Systeme

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

Im Focus: Support Free with “TwoCure” – Innovation in Resin-Based 3D Printing

The Fraunhofer Institute for Laser Technology ILT and Rapid Shape GmbH are working together to further develop resin-based 3D printing. The new “TwoCure” process requires no support structures and is significantly more efficient and productive than conventional 3D printing techniques for plastic components. Experts from Fraunhofer ILT will be presenting the state-funded joint development that makes use of the interaction of light and cold in forming the components at formnext 2017 from November 14 to 17 in Frankfurt am Main.

Much like stereolithography, one of the best-known processes for printing 3D plastic components works using photolithographic light exposure that causes liquid...

Im Focus: Researchers develop chip-scale optical abacus

A team of researchers led by Prof. Wolfram Pernice from the Institute of Physics at Münster University has developed a miniature abacus on a microchip which calculates using light signals. With it they are paving the way to the development of new types of computer in which, as in the human brain, the computing and storage functions are combined in one element.

Researchers at the universities of Münster, Exeter and Oxford have developed a miniature “abacus” which can be used for calculating with light signals. With it...

Im Focus: Lightwave controlled nanoscale electron acceleration sets the pace

Extremely short electron bunches are key to many new applications including ultrafast electron microscopy and table-top free-electron lasers. A german team of physicists from Rostock University, the Max Born Institute in Berlin, the Ludwig-Maxmilians-Universität Munich, and the Max Planck Institute of Quantum Optics in Garching has now shown how electrons can be accelerated in an extreme and well-controlled way with laser light, while crossing a silver particle of just a few nanometers.

Of particular importance for potential applications is the ability to manipulate the acceleration process, known as a swing-by maneuver from space travel, with...

Im Focus: Newly Discovered microRNA Regulates Mobility of Tumor Cells

Cancer cells can reactivate a cellular process that is an essential part of embryonic development. This allows them to leave the primary tumor, penetrate the surrounding tissue and form metastases in peripheral organs. In the journal Nature Communications, researchers from the University of Basel’s Department of Biomedicine provide an insight into the molecular networks that regulate this process.

During an embryo’s development, epithelial cells can break away from the cell cluster, modify their cell type-specific properties, and migrate into other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

 
Latest News

A strange new world of light

03.11.2017 | Physics and Astronomy

Warm air helped make 2017 ozone hole smallest since 1988

03.11.2017 | Earth Sciences

Physicists show how lifeless particles can become 'life-like' by switching behaviors

03.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>