Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MRI shows disrupted connections in the brains of young people with ADHD


A new study has found that children and adolescents with attention deficit hyperactivity disorder (ADHD) have disrupted connections between different areas of the brain that are evident on resting-state functional magnetic resonance imaging (rfMRI). The results of this research are published online in the journal Radiology.

The findings point to the potential of rfMRI to help provide objectively accurate, early diagnosis of a disorder that affects approximately 5 percent of children and adolescents worldwide.

ADHD is a disorder characterized by age-inappropriate degrees of inattention, hyperactivity and impulsivity. Functional MRI studies, which measure brain activity when a person is focused on a particular task, have implicated the brain's frontostriatal circuit, a collection of neural pathways in the frontal lobe of the brain that helps control behavior. However, the specific brain physiology underlying ADHD remains poorly understood.

For the new study, researchers used rfMRI, a relatively new technique that assesses neural function when the brain is not focused on a specific task. The technique is useful for exploring the brain's functional organization independent of task performance.

The researchers compared rfMRI results in 33 boys with ADHD, ages 6 to 16, with those of 32 similarly aged, healthy controls. They correlated the MRI findings with results from tests of executive function, a term for the set of mental processes involved in planning, organizing, time management and regulating emotions, among other things. People with ADHD often have abnormal executive function.

The results showed that the patients with ADHD had altered structure and function located in areas of the brain like the orbitofrontal cortex, which is primarily involved in the cognitive processing of strategic planning, and the globus pallidus, which is involved in executive inhibitory control.

"Our study suggests that the structural and functional abnormalities in these brain regions might cause the inattention and hyperactivity of the patients with ADHD, and we are doing further analysis on their correlation with the clinical symptoms," said Qiyong Gong, M.D., Ph.D., a neuroradiologist from the Department of Radiology at West China Hospital of Sichuan University in Sichuan, China. "Our preliminary results show the association between imaging findings and symptoms."

The researchers also found abnormalities in the connections between resting-state brain networks associated with executive dysfunction. These abnormalities indicate more widespread brain alterations in ADHD than previously had been shown, Dr. Gong said.

Exploration of the association between brain activity and executive function might be useful in better characterizing patients with ADHD and in understanding the pathophysiology underlying the condition, according to Dr. Gong.

"Our results suggest the potential clinical utility of the rfMRI changes as a useful marker, which may help in diagnosis and in monitoring disease progression and, consequently, may inform timely clinical intervention in the future," he said.

Dr. Gong indicated that larger studies are needed to validate the results. The researchers also plan to study changes in connectivity over time in ADHD patients and explore the potential differences of functional connectivity between the clinical subtypes of ADHD, such as inattentiveness and hyperactivity.

The ADHD study is part of a larger project from Dr. Gong's group at Huaxi MR Research Center of the West China Hospital to explore MRI's diagnostic and prognostic potential in psychiatric disorders.


"Intrinsic Brain Abnormalities in Attention Deficit Hyperactivity Disorder: A Resting-State Functional MR Imaging Study." Collaborating with Dr. Gong were Fei Li, Ph.D., Ning He, M.D., Yuanyuan Li, M.D., Lizhou Chen, M.D., Xiaoqi Huang, Ph.D., Su Lui, Ph.D., Lanting Guo, M.D., and Graham J. Kemp, M.A., D.M.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc.

RSNA is an association of more than 53,000 radiologists, radiation oncologists, medical physicists and related scientists promoting excellence in patient care and health care delivery through education, research and technologic innovation. The Society is based in Oak Brook, Ill.

For patient-friendly information on MRI, visit

Linda Brooks | Eurek Alert!

More articles from Medical Engineering:

nachricht Bern’s surgical procedure for brain tumours a world leader
03.11.2015 | Universitätsspital Bern

nachricht Siemens Healthcare introduces first Twin Robotic X-Ray system
29.10.2015 | Siemens AG

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>