Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI shows brain disruption in patients with post-concussion syndrome

21.11.2012
MRI shows changes in the brains of people with post-concussion syndrome (PCS), according to a new study published online in the journal Radiology. Researchers hope the results point the way to improved detection and treatment for the disorder.
PCS affects approximately 20 percent to 30 percent of people who suffer mild traumatic brain injury (MTBI)—defined by the World Health Organization as a traumatic event causing brief loss of consciousness and/or transient memory dysfunction or disorientation. Symptoms of PCS include headache, poor concentration and memory difficulty.

Conventional neuroimaging cannot distinguish which MTBI patients will develop PCS.

"Conventional imaging with CT or MRI is pretty much normal in MTBI patients, even though some go on to develop symptoms, including severe cognitive problems," said Yulin Ge, M.D., associate professor, Department of Radiology at the NYU School of Medicine in New York City. "We want to try to better understand why and how these symptoms arise."

Dr. Ge's study used MRI to look at the brain during its resting state, or the state when it is not engaged in a specific task, such as when the mind wanders or while daydreaming. The resting state is thought to involve connections among a number of regions, with the default mode network (DMN) playing a particularly important role.

"Baseline DMN is very important for information processing and maintenance," Dr. Ge said.

Alterations in DMN have been found in several psychiatric disorders, including Alzheimer's disease, autism and schizophrenia, but little is known about DMN connectivity changes in MTBI.

For the new study, Dr. Ge and colleagues used resting-state functional MRI to compare 23 MTBI patients who had post-traumatic symptoms within two months of the injury and 18 age-matched healthy controls. Resting state MRI detects distinct changes in baseline oxygen level fluctuations associated with brain functional networks between patients with MTBI and control patients.

The MRI results showed that communication and information integration in the brain were disrupted among key DMN structures after mild head injury, and that the brain tapped into different neural resources to compensate for the impaired function.

"We found decreased functional connectivity in the posterior network of the brain and increased connectivity in the anterior component, probably due to functional compensation in patients with PCS," Dr. Ge said. "The reduced posterior connectivity correlated positively with neurocognitive dysfunction."

Dr. Ge and the other researchers hope to recruit additional MTBI patients for further studies with an eye toward developing a biomarker to monitor disease progression and recovery as well as treatment effects.

"We want to do studies to look at the changes in the network over time and correlate these functional changes with structural changes in the brain," he said. "This could give us hints on treatments to bring back cognitive function."

"Default-Mode Network Disruption in Mild Traumatic Brain Injury." Collaborating with Dr. Ge were Yongxia Zhou, Ph.D., Michael P. Milham, M.D., Ph.D., Yvonne W. Lui, M.D., Laura Miles, Ph.D., Joseph Reaume, B.S.R.T., Daniel K. Sodickson, M.D., Ph.D., and Robert I. Grossman, M.D.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc.

RSNA is an association of more than 50,000 radiologists, radiation oncologists, medical physicists and related scientists, promoting excellence in patient care and health care delivery through education, research and technologic innovation. The Society is based in Oak Brook, Ill.

For patient-friendly information on MRI, visit RadiologyInfo.org.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

Further reports about: DMN MRI MTBI PCS Radiological Society psychiatric disorder radiology

More articles from Medical Engineering:

nachricht Electrode shape improves neurostimulation for small targets
25.04.2018 | Purdue University

nachricht Novel PET imaging agent could help guide therapy for brain diseases
03.04.2018 | Society of Nuclear Medicine and Molecular Imaging

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>