Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular imaging identifies high-risk patients with heart disease

11.08.2010
Study shows that a new imaging method can aid in planning implantable cardiac defibrillator placement

A study published in the August Journal of Nuclear Medicine (JNM) finds that molecular imaging—a non-invasive imaging procedure—can identify high-risk patients with potentially life-threatening cardiovascular conditions and help physicians determine which patients are best suited for implantable cardioverter defibrillator (ICD) therapy.

"If the molecular imaging techniques are used for appropriate selection of ICD candidates, not only overuse but also underuse of ICD could be avoided and the assessment may be shown to be more cost-effective," said Kimio Nishisato, M.D., a physician in the cardiology division of Muroram City General Hospital, Muroram, Japan, and corresponding author for the study.

According to researchers from Sapporo University, Sapporo, Japan, the study shows that molecular imaging can play an important role in diagnosing and guiding the treatment strategy for arrhythmia, coronary artery disease and heart failure.

"This research holds significant potential for the detection, diagnosis and treatment of many common cardiovascular conditions," said Tomoaki Nakata, M.D., Ph.D., an associate professor at the Sapporo Medical University School of Medicine and director of the Hokkaido Prefectural Esashi Hospital, Japan. "With molecular imaging, physicians can improve patient care by pinpointing the precise location of the disease in order to eliminate the need for invasive medical devices and unnecessary surgical techniques." Nakata adds that molecular imaging can also reduce unnecessary medical costs by better targeting treatment for each individual patient.

In this study, researchers hypothesized that both the impairment of myocardial perfusion and/or cell viability and cardiac sympathetic innervations are responsible for heart arrhythmia and sudden cardiac death. However, there was no established reliable method, including a molecular imaging technique which is highly objective, reproducible and quantitative. The researchers investigated prognostic implications of cardiac pre-synaptic sympathetic function quantified by cardiac MIBG activity and myocyte damage or viability quantified by cardiac tetrofosmin activity in patients treated with prophylactic use of ICD, by correlating with lethal arrhythmic events which would have been documented during a prospective follow-up. Based on these aspects, the study is the first to show the efficacies of the method for more accurate identification of patients at greater risk of lethal arrhythmias and sudden cardiac death (SCD).

"Sudden cardiac death due to lethal arrhythmia represents an important health care problem in many developed countries," said Ichiro Matsunari, M.D., Ph.D., director of the clinical research department at the Medical & Pharmacological Research Center Foundation, Hakui, Japan, and author of an invited perspective also published in the August JNM. "While implantable cardioverter defibrillator therapy is an effective option over anti-arrhythmic medications to prevent SCD, the balance of clinical benefits, efficacy and risks is still a matter of discussion."

Matsunari adds that better, more precise strategies such as the molecular imaging technique used in this study are needed to identify high-risk patients for SCD, who are most likely to benefit from ICD therapy. SCD is often the first manifestation of an underlying disease—but one that current treatments such as ICD cannot always detect. Molecular imaging helps guide diagnosis and treatment as well as helps avoid unnecessary ICD treatment.

Authors of "Impaired Cardiac Sympathetic Innervation and Myocardial Perfusion Are Related to Lethal Arrhythmia: Quantification of Cardiac Tracers in Patients with ICDs" include: Kimio Nishisato, Division of Cardiology, Muroram City General Hospital, Muroran, Japan; Akiyoshi Hashimoto, Tomoaki Nakata, Takahiro Doi, Hitomi Yamamoto, Shinya Shimoshige, Satoshi Yuda, Kazufumi Tsuchihashi and Kazuaki Shimamoto, Sapporo Medical University School of Medicine, Sapporo, Japan; Daigo Nagahara, Obihiro-Kosei General Hospital, Obihiro, Japan.

Authors of "123I-Metaiodobenzylguanidine Imaging in the Era of Implantable Cardioverter Defibrillators: Beyond Ejection Fraction" include Ichiro Matsunari, Medical and Pharmacological Research Center Foundation, Hakui, Japan; Junichi Taki, Kenichi Nakajima and Seigo Kinuya, Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan.

Please visit the SNM Newsroom to view the PDF of the study. To schedule an interview with the researchers, please contact Amy Shaw at (703) 652-6773 or ashaw@snm.org, or Jane Kollmer at (703) 326-1184 or jkollmer@snm.org. Current and past issues of The Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org.

About SNM—Advancing Molecular Imaging and Therapy

SNM is an international scientific and medical organization dedicated to raising public awareness about what molecular imaging is and how it can help provide patients with the best health care possible. SNM members specialize in molecular imaging, a vital element of today's medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated.

SNM's more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snm.org.

Amy Shaw | EurekAlert!
Further information:
http://www.snm.org

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>