Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular imaging identifies high-risk patients with heart disease

11.08.2010
Study shows that a new imaging method can aid in planning implantable cardiac defibrillator placement

A study published in the August Journal of Nuclear Medicine (JNM) finds that molecular imaging—a non-invasive imaging procedure—can identify high-risk patients with potentially life-threatening cardiovascular conditions and help physicians determine which patients are best suited for implantable cardioverter defibrillator (ICD) therapy.

"If the molecular imaging techniques are used for appropriate selection of ICD candidates, not only overuse but also underuse of ICD could be avoided and the assessment may be shown to be more cost-effective," said Kimio Nishisato, M.D., a physician in the cardiology division of Muroram City General Hospital, Muroram, Japan, and corresponding author for the study.

According to researchers from Sapporo University, Sapporo, Japan, the study shows that molecular imaging can play an important role in diagnosing and guiding the treatment strategy for arrhythmia, coronary artery disease and heart failure.

"This research holds significant potential for the detection, diagnosis and treatment of many common cardiovascular conditions," said Tomoaki Nakata, M.D., Ph.D., an associate professor at the Sapporo Medical University School of Medicine and director of the Hokkaido Prefectural Esashi Hospital, Japan. "With molecular imaging, physicians can improve patient care by pinpointing the precise location of the disease in order to eliminate the need for invasive medical devices and unnecessary surgical techniques." Nakata adds that molecular imaging can also reduce unnecessary medical costs by better targeting treatment for each individual patient.

In this study, researchers hypothesized that both the impairment of myocardial perfusion and/or cell viability and cardiac sympathetic innervations are responsible for heart arrhythmia and sudden cardiac death. However, there was no established reliable method, including a molecular imaging technique which is highly objective, reproducible and quantitative. The researchers investigated prognostic implications of cardiac pre-synaptic sympathetic function quantified by cardiac MIBG activity and myocyte damage or viability quantified by cardiac tetrofosmin activity in patients treated with prophylactic use of ICD, by correlating with lethal arrhythmic events which would have been documented during a prospective follow-up. Based on these aspects, the study is the first to show the efficacies of the method for more accurate identification of patients at greater risk of lethal arrhythmias and sudden cardiac death (SCD).

"Sudden cardiac death due to lethal arrhythmia represents an important health care problem in many developed countries," said Ichiro Matsunari, M.D., Ph.D., director of the clinical research department at the Medical & Pharmacological Research Center Foundation, Hakui, Japan, and author of an invited perspective also published in the August JNM. "While implantable cardioverter defibrillator therapy is an effective option over anti-arrhythmic medications to prevent SCD, the balance of clinical benefits, efficacy and risks is still a matter of discussion."

Matsunari adds that better, more precise strategies such as the molecular imaging technique used in this study are needed to identify high-risk patients for SCD, who are most likely to benefit from ICD therapy. SCD is often the first manifestation of an underlying disease—but one that current treatments such as ICD cannot always detect. Molecular imaging helps guide diagnosis and treatment as well as helps avoid unnecessary ICD treatment.

Authors of "Impaired Cardiac Sympathetic Innervation and Myocardial Perfusion Are Related to Lethal Arrhythmia: Quantification of Cardiac Tracers in Patients with ICDs" include: Kimio Nishisato, Division of Cardiology, Muroram City General Hospital, Muroran, Japan; Akiyoshi Hashimoto, Tomoaki Nakata, Takahiro Doi, Hitomi Yamamoto, Shinya Shimoshige, Satoshi Yuda, Kazufumi Tsuchihashi and Kazuaki Shimamoto, Sapporo Medical University School of Medicine, Sapporo, Japan; Daigo Nagahara, Obihiro-Kosei General Hospital, Obihiro, Japan.

Authors of "123I-Metaiodobenzylguanidine Imaging in the Era of Implantable Cardioverter Defibrillators: Beyond Ejection Fraction" include Ichiro Matsunari, Medical and Pharmacological Research Center Foundation, Hakui, Japan; Junichi Taki, Kenichi Nakajima and Seigo Kinuya, Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan.

Please visit the SNM Newsroom to view the PDF of the study. To schedule an interview with the researchers, please contact Amy Shaw at (703) 652-6773 or ashaw@snm.org, or Jane Kollmer at (703) 326-1184 or jkollmer@snm.org. Current and past issues of The Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org.

About SNM—Advancing Molecular Imaging and Therapy

SNM is an international scientific and medical organization dedicated to raising public awareness about what molecular imaging is and how it can help provide patients with the best health care possible. SNM members specialize in molecular imaging, a vital element of today's medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated.

SNM's more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snm.org.

Amy Shaw | EurekAlert!
Further information:
http://www.snm.org

More articles from Medical Engineering:

nachricht Noninvasive eye scan could detect key signs of Alzheimer's years before patients show symptoms
18.08.2017 | Cedars-Sinai Medical Center

nachricht Water-filtered infrared-A (wIRA) overcomes swallowing disorders and hypersalivation – a case report
10.08.2017 | Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V.

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>