Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular imaging identifies high-risk patients with heart disease

11.08.2010
Study shows that a new imaging method can aid in planning implantable cardiac defibrillator placement

A study published in the August Journal of Nuclear Medicine (JNM) finds that molecular imaging—a non-invasive imaging procedure—can identify high-risk patients with potentially life-threatening cardiovascular conditions and help physicians determine which patients are best suited for implantable cardioverter defibrillator (ICD) therapy.

"If the molecular imaging techniques are used for appropriate selection of ICD candidates, not only overuse but also underuse of ICD could be avoided and the assessment may be shown to be more cost-effective," said Kimio Nishisato, M.D., a physician in the cardiology division of Muroram City General Hospital, Muroram, Japan, and corresponding author for the study.

According to researchers from Sapporo University, Sapporo, Japan, the study shows that molecular imaging can play an important role in diagnosing and guiding the treatment strategy for arrhythmia, coronary artery disease and heart failure.

"This research holds significant potential for the detection, diagnosis and treatment of many common cardiovascular conditions," said Tomoaki Nakata, M.D., Ph.D., an associate professor at the Sapporo Medical University School of Medicine and director of the Hokkaido Prefectural Esashi Hospital, Japan. "With molecular imaging, physicians can improve patient care by pinpointing the precise location of the disease in order to eliminate the need for invasive medical devices and unnecessary surgical techniques." Nakata adds that molecular imaging can also reduce unnecessary medical costs by better targeting treatment for each individual patient.

In this study, researchers hypothesized that both the impairment of myocardial perfusion and/or cell viability and cardiac sympathetic innervations are responsible for heart arrhythmia and sudden cardiac death. However, there was no established reliable method, including a molecular imaging technique which is highly objective, reproducible and quantitative. The researchers investigated prognostic implications of cardiac pre-synaptic sympathetic function quantified by cardiac MIBG activity and myocyte damage or viability quantified by cardiac tetrofosmin activity in patients treated with prophylactic use of ICD, by correlating with lethal arrhythmic events which would have been documented during a prospective follow-up. Based on these aspects, the study is the first to show the efficacies of the method for more accurate identification of patients at greater risk of lethal arrhythmias and sudden cardiac death (SCD).

"Sudden cardiac death due to lethal arrhythmia represents an important health care problem in many developed countries," said Ichiro Matsunari, M.D., Ph.D., director of the clinical research department at the Medical & Pharmacological Research Center Foundation, Hakui, Japan, and author of an invited perspective also published in the August JNM. "While implantable cardioverter defibrillator therapy is an effective option over anti-arrhythmic medications to prevent SCD, the balance of clinical benefits, efficacy and risks is still a matter of discussion."

Matsunari adds that better, more precise strategies such as the molecular imaging technique used in this study are needed to identify high-risk patients for SCD, who are most likely to benefit from ICD therapy. SCD is often the first manifestation of an underlying disease—but one that current treatments such as ICD cannot always detect. Molecular imaging helps guide diagnosis and treatment as well as helps avoid unnecessary ICD treatment.

Authors of "Impaired Cardiac Sympathetic Innervation and Myocardial Perfusion Are Related to Lethal Arrhythmia: Quantification of Cardiac Tracers in Patients with ICDs" include: Kimio Nishisato, Division of Cardiology, Muroram City General Hospital, Muroran, Japan; Akiyoshi Hashimoto, Tomoaki Nakata, Takahiro Doi, Hitomi Yamamoto, Shinya Shimoshige, Satoshi Yuda, Kazufumi Tsuchihashi and Kazuaki Shimamoto, Sapporo Medical University School of Medicine, Sapporo, Japan; Daigo Nagahara, Obihiro-Kosei General Hospital, Obihiro, Japan.

Authors of "123I-Metaiodobenzylguanidine Imaging in the Era of Implantable Cardioverter Defibrillators: Beyond Ejection Fraction" include Ichiro Matsunari, Medical and Pharmacological Research Center Foundation, Hakui, Japan; Junichi Taki, Kenichi Nakajima and Seigo Kinuya, Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan.

Please visit the SNM Newsroom to view the PDF of the study. To schedule an interview with the researchers, please contact Amy Shaw at (703) 652-6773 or ashaw@snm.org, or Jane Kollmer at (703) 326-1184 or jkollmer@snm.org. Current and past issues of The Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org.

About SNM—Advancing Molecular Imaging and Therapy

SNM is an international scientific and medical organization dedicated to raising public awareness about what molecular imaging is and how it can help provide patients with the best health care possible. SNM members specialize in molecular imaging, a vital element of today's medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated.

SNM's more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snm.org.

Amy Shaw | EurekAlert!
Further information:
http://www.snm.org

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>