Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Miniature 'wearable' PET scanner ready for use

14.03.2011
New tool will allow integrated, simultaneous study of behavior and brain function in animals

Scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, Stony Brook University, and collaborators have demonstrated the efficacy of a "wearable," portable PET scanner they've developed for rats. The device will give neuroscientists a new tool for simultaneously studying brain function and behavior in fully awake, moving animals.

The researchers describe the tool and validation studies in the April 2011 issue of Nature Methods.

"Positron emission tomography (PET) is a powerful tool for studying the molecular processes that occur in the brain," said Paul Vaska, head of PET physics at Brookhaven with a joint appointment at Stony Brook, who led the development of the portable scanner together with Brookhaven colleagues David Schlyer and Craig Woody. PET studies in animals at Brookhaven and elsewhere have helped to uncover the molecular underpinnings of conditions such as drug addiction.

But studying animals with PET has required general anesthesia or other methods to immobilize the animals. "Immobilization and anesthesia make it impossible to simultaneously study neurochemistry and the animals' behavior - the actions resulting from what goes on in the brain," Schlyer said. "Our approach was to eliminate the need for restraint by developing a PET scanner that would move with the animal, thus opening up the possibility of directly correlating the imaging data with behavioral data acquired at the same time."

After several years of development, the scientists have arrived at a design for a miniature, portable, donut-shaped PET scanner that can be "worn" like a collar on a rat's head for simultaneous studies of brain function and behavior. Weighing only 250 grams, the device - dubbed RatCAP, for Rat Conscious Animal PET - is counterbalanced by a system of springs and motion stabilizers to allow the animal significant freedom of movement. Measurements of the rats' stress hormones indicated only moderate and temporary increases.

"Rats wearing the device appear to adapt well and move freely about their environment," Woody said.

To validate the use of the wearable scanner for simultaneous studies of brain function and behavior, the scientists conducted tests with 11C-raclopride, a commonly used PET radiotracer, which incorporates a radioactive, positron-emitting isotope of the element carbon. When the positrons interact with electrons in ordinary matter, they immediately annihilate one another, emitting back-to-back gamma rays. Detectors in the circular PET scanner pick up the signals from these back-to-back gamma rays to identify the location and concentration of the tracer in the body.

The tracer 11C-raclopride binds to receptors for dopamine, a brain chemical involved in movement, reward, and memory formation. A higher signal from the tracer means that less natural dopamine is in that particular part of the brain; a low signal indicates that that particular part of the brain has released dopamine (which binds to its receptors, thus blocking the tracer from binding).

The main test was to see if the wearable scanner could be used to correlate dopamine levels with behavior - in this case, the rats' activity (i.e., movement) within their chambers. Surprisingly the level of activity was inversely related to dopamine levels - that is, the more active the animals were, the lower the level of dopamine (as indicated by a stronger tracer signal).

"This is perhaps a counterintuitive result because behavioral activation is typically associated with an increase in dopamine release," said Daniela Schulz, a Brookhaven behavioral neuroscientist and lead author of the paper. "So our method provides data which may challenge traditional paradigms and ultimately improve our understanding of the dopamine system."

"But regardless of the direction, the results clearly demonstrate that RatCAP can correlate brain function measurements with behavioral measures in a useful way," she said.

The scientists also present results comparing RatCAP-wearing rats moving freely about their cages with animals that had been anesthetized, as well as comparisons of two methods of administering the tracer - injecting it all at once and in a steady infusion to maintain a constant concentration in the blood.

"These measurements will help us further refine the technique and aid in our assessment of results obtained with RatCAP in comparison with other study techniques," Schulz said.

The researchers' next step will be to use RatCAP to explore distinct behavioral expressions that can be correlated with simultaneously acquired PET data.

The research was funded by the DOE Office of Science. Development of RatCAP was a joint effort between Brookhaven's Medical, Chemistry and Physics Departments, Instrumentation Division and the Biomedical Engineering Department at Stony Brook University. Co-authors on the paper include: Daniela Schulz (Brookhaven), Sudeepti Southekal (Brigham & Women's Hospital, Boston),Sachin S. Junnarkar (Brookhaven), Jean-François Pratte (Université de Sherbrooke, Sherbrooke, Canada), Martin L. Purschke (Brookhaven), Paul O'Connor (Brookhaven), Sean P. Stoll (Brookhaven), Bosky Ravindranath (Stony Brook), Sri Harsha Maramraju (Stony Brook), Srilalan Krishnamoorthy (Stony Brook), Fritz A. Henn (Brookhaven and Cold Spring Harbor Laboratory), Craig L. Woody (Brookhaven), and David J. Schlyer and Paul Vaska (Brookhaven and Stony Brook).

All research involving laboratory animals at Brookhaven National Laboratory is conducted under the jurisdiction of the Lab's Institutional Animal Care and Use Committee (IACUC, http://www.bnl.gov/ora/IACUC.asp) in compliance with the Public Heath Service (PHS) Policy on Humane Care and Use of Laboratory Animals (http://grants.nih.gov/grants/olaw/references/phspol.htm), the U.S. Department of Agriculture's Animal Welfare Act (http://www.nal.usda.gov/awic/legislat/usdaleg1.htm), and the National Academy of Sciences' Guide for the Care and Use of Laboratory Animals (http://www.nap.edu/readingroom/books/labrats/). This research has enhanced understanding of a wide array of human medical conditions including cancer, drug addiction, Alzheimer's and Parkinson's diseases, and normal aging and has led to the development of several promising treatment strategies.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more at http://www.bnl.gov/newsroom , or follow Brookhaven Lab on Twitter, http://twitter.com/BrookhavenLab

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>