Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diaphragm pacing in spinal cord injury successful in weaning patients from ventilators

10.02.2014
System gained nationwide attention when University Hospitals Case Medical Center's Dr. Onders implanted stimulator in actor Christopher Reeve

A new study published in the Journal of Trauma and Acute Care Surgery finds that diaphragm pacing (DP) stimulation in spinal cord-injured patients is successful not only in weaning patients from mechanical ventilators but also in bridging patients to independent respiration, where they could breathe on their own without the aid of a ventilator or stimulation.

The stimulation is provided by the Diaphragm Pacing System (DPS), a technology providing electrical stimulation to nerves running through the diaphragm, the major muscle involved in breathing. When stimulated, the diaphragm contracts, allowing patients to breathe more naturally than having air forced into their lungs as a mechanical ventilator would do. The system is implanted through minimally invasive laparoscopic surgery.

One of the inventors of DPS and an author of the new study is Raymond Onders, MD, of University Hospitals (UH) Case Medical Center. DPS gained national attention in 2003 when Dr. Onders, Director of Minimally Invasive Surgery at UH, implanted the system in the late actor Christopher Reeve, who had a traumatic spinal cord injury (SCI) from a horse-riding accident.

The new study examined the records of 29 patients, average age 31, at 16 hospitals in the United States where DP implantation is approved. SCIs were caused by a variety of accidents, including car accidents, diving, gunshot wounds, falls, and athletic injuries. Elapsed time from injury to surgery was 40 days, which was considerably shorter than an initial FDA trial in which patients did not have DP testing and surgery for more than a year after injury. All but two patients were men. A goal of this study was to determine if earlier testing and DP implants provided benefit.

Of the patients whose diaphragm muscles responded to stimulation, 16 of 22 patients (72 percent) were completely free of ventilator support in an average of 10 days. Of the remaining six patients, two had a delayed weaning of six months, three had partial weans using DP at times during the day (One patient successfully implanted went to a long-term acute care hospital and subsequently had life-prolonging measures withdrawn.) Seven of the 29 patients were found to have non-stimulatable diaphragms from nerve damage.

Eight patients (36 percent) had complete recovery of respiration, and DP wires were removed.

"This study provides several important observations," said Dr. Onders, who is also Professor of Surgery at Case Western Reserve University School of Medicine. "Most notably, laparoscopic diaphragm mapping – an electronic reading of the diaphragm nerves – is safe and can be performed in multiple centers with success. In addition, early diaphragm mapping can quickly determine if a phrenic nerve injury is complete, allowing for early ventilator planning and prevention of weaning trials if we find the patient will not be able to be weaned from the ventilator. Finally, DP can successfully wean traumatic cervical SCI patients as evidenced by 72 percent of the implanted patients being completely weaned from ventilators and 36 percent with complete recovery and DP removal.

"DP is a major step in improving the quality of life for patients who have spinal cord injuries and cannot breathe without the help of a ventilator," said Dr. Onders. "Based on testimonials that I've received from patients who have been in the clinical trials, DP provides patients with a freedom of mobility that they never imagined. They've sent photographs or videos themselves parachuting from planes, sailing solo, or enjoying rides at amusement parks with their families; activities impossible to do with a ventilator."

Traumatic spinal cord injuries (SCIs) that require chronic ventilator dependence are relatively rare: Less than four percent or 480 cases out of the estimated 12,000 traumatic SCIs occurring annually in the United States.

DPS has also been approved for patients with amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease) and is being used in patients with other conditions as well.

DPS is made by Synapse Biomedical, Inc., a company co-founded by Dr. Onders and located in Oberlin, Ohio. Dr. Onders, UH Case Medical Center, and Case Western Reserve University have intellectual property rights in Synapse.

About University Hospitals

University Hospitals, the second largest employer in Northeast Ohio, serves the needs of patients through an integrated network of hospitals, outpatient centers and primary care physicians in 16 counties. At the core of our health system is University Hospitals Case Medical Center, one of only 18 hospitals in the country to have been named to U.S. News & World Report's most exclusive rankings list: the Best Hospitals 2013-14 Honor Roll. The primary affiliate of Case Western Reserve University School of Medicine, UH Case Medical Center is home to some of the most prestigious clinical and research centers of excellence in the nation and the world, including cancer, pediatrics, women's health, orthopaedics and spine, radiology and radiation oncology, neurosurgery and neuroscience, cardiology and cardiovascular surgery, organ transplantation and human genetics. Its main campus includes the internationally celebrated UH Rainbow Babies & Children's Hospital, ranked among the top children's hospitals in the nation; UH MacDonald Women's Hospital, Ohio's only hospital for women; and UH Seidman Cancer Center, part of the NCI-designated Case Comprehensive Cancer Center at Case Western Reserve University. UH Case Medical Center is the 2012 recipient of the American Hospital Association – McKesson Quest for Quality Prize for its leadership and innovation in quality improvement and safety.

George Stamatis | EurekAlert!
Further information:
http://www.uhhospitals.org

More articles from Medical Engineering:

nachricht Novel chip-based gene expression tool analyzes RNA quickly and accurately
18.01.2018 | University of Illinois College of Engineering

nachricht Potentially life-saving health monitor technology designed by Sussex University physicists
10.01.2018 | University of Sussex

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>