Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Barrow study identifies new way to biopsy brain tumors in real time

13.11.2009
New microscope is expected to improve the accuracy of intraoperative diagnostics

A new miniature, hand-held microscope may allow more precise removal of brain tumors and an easier recognition of tumor locations during surgery.

Neurosurgeons at Barrow Neurological Institute at St. Joseph's Hospital and Medical Center are using the new miniature laser confocal microscope to view brain tumor regions during surgery and obtain digital images of the tumor and brain tissue. This was not previously possible without taking biopsies of the tissue.

The microscope is used to image the tissue after a fluorescent drug is injected into the patient and travels into the tumor. The first application of the technology in the research lab at Barrow showed that it was possible to distinguish cancer cells and the margin of the brain tumor without taking a biopsy. Barrow researchers also discovered that it was possible to obtain a digital video of the brain tumor to show blood flowing through the abnormal vessels of the tumor and the transition from normal to abnormal brain tissue.

Typically, intraoperative diagnosis is performed by obtaining several specimens from within a brain tumor using biopsy forceps and cutting, freezing and staining the specimen for examination under the microscope. The traditional analysis is limited by sampling error and by mechanical tissue damage from the biopsy forceps, slowing operative workflow by 30 to 40 minutes.

The new microscope can overcome these limitations by helping to visualize the cellular and tissue features of a tumor in real-time. As in the study, the probe can be moved over the entire visible extent of a tumor, guiding the neurosurgeon to hypercellular or aggressive areas that are likely to generate high-yield biopsies.

"As neuropathologists become familiar with the new confocal microscopic appearance of various tumor types and grades, the traditional intraoperative diagnosis may be replaced by the real-time analysis of confocal images by the new microscope," says Mark Preul, MD, Newsome Chair of Neurosurgery Research at Barrow. These images could be analyzed remotely, improving the accuracy of intraoperative diagnosis.

This study was presented at the Annual Meeting of the American Association of Neurological Surgeons in San Diego and was recently published in the Journal of Neurosurgery.

Carmelle Malkovich | EurekAlert!
Further information:
http://www.chw.edu

More articles from Medical Engineering:

nachricht 'Neuron-reading' nanowires could accelerate development of drugs for neurological diseases
12.04.2017 | University of California - San Diego

nachricht PET radiotracer design for monitoring targeted immunotherapy
10.04.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>