Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Less Vibration of Cranes: Faster Loading of Ships

14.02.2011
An active vibration damper system from Siemens is helping to cut the time required to load and unload container vessels. In the case of conventional container cranes, the container bridge vibrates whenever loads are lifted and moved.

To restrict such motion, so that containers can be set down with an accuracy of a few centimeters, crane drivers have to reduce operating speed, which extends loading and unloading times. The active damper system from Siemens counteracts vibrations by moving a weight along the container bridge. This keeps the crane steady at faster operating speeds. Siemens plans to introduce the system on the market by mid-2011, together with a crane builder.


Today’s container cranes have to be over 30 meters high in order to accommodate large container ships. At the same time, however, they must take up as little dockside space as possible, so that port vehicles have enough room. Such a delicate construction is not sufficiently rigid to withstand the forces generated by a swinging container. This results in vibrations: The greater the speed at which the crane trolley transports the load along the container bridge, the more the structure vibrates. So-called “passive mass dampers,” which weigh as much as 60 tons, are usually used to quell the vibrations. Suspended like a pendulum, they absorb them with a damper system, such as a hydraulic cylinder.

By comparison, the active damping system from Siemens Drive Technologies functions in a much more precise way and is able to make do with one tenth of the weight. Sensors on the container bridge measure the crane’s vibrations and transmit this data to a linear motor’s control system. On the basis of this information, the linear motor moves a weight of only a few metric tons along the container bridge. By means of precise acceleration and braking of this motor, forces are applied to the crane. Special algorithms are used to control the movement of the linear motor in such a way that vibrations are rapidly and effectively neutralized.

The active damping system was originally developed for mechanical engineering applications, especially for machinery used to produce parts with very precise surface characteristics. The work must be performed at low speeds, however, due to machine vibrations, resulting in high costs. Analysis of the precise characteristics of these vibrations made it possible to devise algorithms for a machine control system that suppresses such shaking. This procedure is currently undergoing testing with pilot customers.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

Further reports about: Cranes Ships Vibration active damper system container bridge damping system

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>