Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bird sized airplane to fly like a swift

19.07.2007
Nine Dutch Aerospace Engineering students at the Delft University of Technology, together with the Department of Experimental Zoology of Wageningen University, designed the RoboSwift. RoboSwift is a micro airplane fitted with shape shifting wings, inspired by the common swift, one of nature’s most efficient flyers.

The micro airplane will have unprecedented wing characteristics; the wing geometry as well as the wing surface area can be adjusted continuously. This makes RoboSwift more maneuverable and efficient. Resembling the common swift, RoboSwift will be able to go undetected while using its three micro cameras to perform surveillance on vehicles and people on the ground. Furthermore, it can be employed to observe swifts in flight, thus enabling new biological research.

The RoboSwift team presented the design on the yearly Design Synthesis symposium at TU Delft. The team will build the high-tech micro airplane in the following months; it is expected to fly in January 2008. The student team will build three RoboSwifts to participate in March 2008 in the First American-Asian Micro Air Vehicle competition in India.

Morphing

RoboSwift will have a span of 50 cm span and 80 grams weight. It can follow a group of swifts up to 20 minutes and perform ground surveillance up to one hour thanks to its lithium-polymer batteries that power the electromotor, which drives a propeller. The propeller folds back during gliding to minimize air drag.

The unique morphing-wing design features are taken from the swift. Morphing means the wings can be swept back in flight by folding feathers over each other, thus changing the wing shape and reducing the wing surface area. RoboSwift also steers by morphing its wings. Doing so, the micro airplane can perform optimally, flying efficiently and highly maneuverable at very high and very low speeds, just like the swift.

The students found out that using only four feathers, much less than the bird uses, already provides the wing with sufficient morphing capacity; this feature makes actual production of the design feasible. Steering RoboSwift is done by asymmetrically morphing the wings. Sweeping one wing back further than the other creates a difference in lift on the wings that is used to roll and turn the micro plane in the air.

Efficient

The team based the project on research performed by its tutor ir. David Lentink, who published a study into the swift’s flight characteristics in this year’s April issue of Nature. During its life, a common swift flies a distance that goes up to five times the distance to the Moon and back. Lentink c.s. found the swift is such an able flyer because it continuously adjusts (‘morphs’) its wings to the prevailing flight conditions to fly more efficient and more maneuverable. Airplanes can do a lot, but so far they do not fly nearly as well as birds in terms of performance and efficiency. In a ‘standard’ civil aircraft, the wings are held a fixed position with respect to the fuselage during the full length of the flight. This is inefficient because flight conditions change in different flight phases. With their variable wings, birds can easily deal with the different conditions encountered during flight, thus increasing their flight efficiency and agility up to a factor three.

Although a few military aircraft, such as the F14 Tomcat and the English-German Tornado, are equipped with so-called swing wings, none of these aircraft significantly reduces the surface area of the wing, thus missing out on the benefits made possible by morphing. Also, these aircraft do not steer by means of the variable wing shape.

Ir. David Lentink | alfa
Further information:
http://www.roboswift.nl
http://www.tudelft.nl/live/pagina.jsp?id=716391ce-4c34-4d4b-948b-dad5277745b8&lang=nl

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>