Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New wind tunnel aimed at making airplanes quieter to those on ground

23.11.2005


As airline travel peaks for the Thanksgiving holiday, a newly completed wind tunnel at the University of Florida may help reduce the noise of commercial airplanes as they fly over homes and neighborhoods.



The tunnel is one of only a handful in the country and currently the largest at a university designed specifically to reduce noise from planes passing overhead and landing. Engineers will use the $400,000 tunnel to learn how to reduce the noise caused by the flow of air over wings, flaps and landing gear – the primary sources of the annoying sound that reaches people on the ground when planes are landing.

“During approach for landing, the dominant noise comes from the airframe as opposed to the jet engines,” said Lou Cattafesta, a UF associate professor of mechanical and aerospace engineering. “We need to understand where the noise is coming from, how it is generated and how we can reduce it. That’s what this facility is geared toward doing.”


The wind tunnel, completed this spring after two years, is timely. Air travel is increasing worldwide, spurring the construction and expansion of airports and increasing noise-related problems, Cattafesta said. Also, engineers have reduced jet engine noise to an extent that it now makes sense to focus attention on the noise from other aircraft components.

“With airframe noise, as little as 10 years ago, very few people cared,” Cattafesta said. “But today’s engines have gotten so quiet during landing, airframe noise is what you hear.”

The tunnel, called “anechoic” because it is designed to minimize echoes, is one of only two at U.S. universities aimed at addressing this problem. It is larger and faster than its counterpart at the University of Notre Dame. Virginia Tech currently is refurbishing its large aerodynamic stability wind tunnel to make it suitable for airframe noise studies.

UF’s tunnel is housed in a soundproof room in one of UF’s mechanical and aerospace engineering buildings. The room’s walls and ceiling and even the door are covered with 3-foot-long fiberglass wedges designed to absorb 99 percent of the sound the engineers are concerned with. Anyone inside the tunnel must speak loudly to be heard by someone just a few feet away.

The tunnel itself is composed of a reinforced fiberglass inlet separated by an open 6-foot-long test section from an acoustically lined outlet that collects and diffuses the wind.

The chamber is not large enough to accommodate full-scale aircraft parts, so engineers plan to use scale models. They will place the models, expected to be one-tenth to one-fifth the size of the real thing, in the chamber, then measure the flow and noise they create – a noise intended to be untarnished either by unrelated noise from outside or echo effects inside.

“If I put something in the air flow, that’s what I want to hear, and that’s the only thing I want to hear,” Cattafesta said.

A 300-horsepower fan pulls air through the tunnel. It is located outside the building on its own concrete pad and foundation, which ensures its noise and vibration don’t contaminate experiments. The fan is capable of moving air at speeds of up to 170 mph, the typical speed of most commercial jets as they approach an airport for landing, Cattafesta said.

The soundproof room, built by Eckel Industries, was completed in 2002. But UF faculty including Mark Sheplak and Bruce Carroll and graduate and undergraduate students pitched in to design and build the tunnel. Otherwise, Cattafesta said, it would have been prohibitively expensive. NASA Langley provided the bulk of the funding for the project.

Mechanical and aerospace engineering doctoral students Jose Mathew and Chris Bahr said the toughest challenge was crafting 60 airfoils that turn the air flow 90 degrees as it leaves the building. The team needed to make that turn to fit the tunnel into the available space, and the fiberglass and rubber-filled vanes make the process as streamlined and quiet as possible, they said.

Cattafesta said engineers have long designed airplanes to be safe, reliable, fuel-efficient comfortable for their occupants. Traditionally, he said, “noise is generally not something you worry about until you hear it.”

But thanks to better composite materials and sophisticated computer design tools, that’s changing, he said, and the UF tunnel dovetails with that trend.

“It’s clear that by re-engineering things better and better we have an opportunity to reduce the noise,” he said. “We’re really putting ourselves in a position where we can experimentally look at these questions.”

Lou Cattafesta | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>